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Abstract—In this paper, we propose an efficient GPU-
training framework for the large-scale wide models, named
cuWide. To fully benefit from the memory hierarchy of GPU,
cuWide applies a new flow-based schema for training, which
leverages the spatial and temporal locality of wide models
to drastically reduce the amount of communication with GPU
global memory. Comprehensive experiments show that cuWide
can be up to more than 20x faster than the state-of-the-art
GPU solutions and multi-core CPU solutions.

I. INTRODUCTION

Wide model [1] has been widely used in many practical
big data applications, which can be expressed as a linear
combination of sample features followed by an activa-
tion function. Given such increasing demands for high
dimensional workloads, more efficient model training on
GPU with thousands of computing units and high memory
bandwidth becomes promising and attractive.
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Fig. 1. The two strategies for training.

However, the GPU training for the wide models is far
from optimal due to the sparsity and irregularity in wide
models. Existing popular GPU-based systems, e.g., Ten-
sorFlow (TF), adopt stage-based strategy during training,
as illustrated in Figure 1(a). It suffers from large amount
of random memory accesses and redundant read/write of
intermediate values, which makes the wide model training
on GPU even slower than the ones using CPU.

In this paper [2], we propose a novel flow-based training
schema in Figure 1(b) and provide a vertex-centric pro-
gramming model Aggregate-Loss-Apply (ALA) to express
the execution of various wide models over a bi-graph. Fur-
thermore, we exploit the fine-grained data access pattern
of wide models and utilize the limited shared memory
(up to 96 KB) to cache the important model parameters
and cross-stage accumulations, which alleviates the global
memory access and achieves a high-performance training.

II. PROBLEM DEFINITION

Wide model. GLMs (e.g.,, LR, LSVM, LSR and FTRL)
and FM are most representative and popular wide models
for industrial applications because they are simple, scal-
able and interpretable. Formally defined as: y(x)= wx,
where w € R is the model parameters, x is the m-
dimensional feature vector and j is the prediction. The
loss function of a given wide model can be formulated
as: L(w) = Z?:1 I(y;, wx;). The goal of wide model is to
minimize the loss function and find w =argmin, L(w).
Stage-based strategy problem. The stage-based strategy
calculates prediction errors in the forward stage and uses
gradients to update the model in the backward stage.
The computation is often expressed by operations among
tensors on GPU global memory. Such implementation
exhibits several attractive features in programming and
flexibility, but it has potential efficiency limitation due
to inefficient memory accesses. To accelerate the model
training, the shared memory is a better option for tem-
porally storing the intermediate data. However with the
tensor abstraction, the obstacle of doing so is that the
capacity of shared memory is small (up to 96 KB per
streaming multiprocessor), while the number of features
can easily exceed millions (more than 1 MB memory).

III. METHODS

Spatial Locality. In many large-scale machine learning
problems [3], it is very common that the feature frequency
almost follows a power law distribution. More concretely,
most features only show up in few samples, and the
top features are nonzero for almost all samples. This
feature skewness implies the spatial locality in accessing
model parameters and opportunities for gains by caching
importance features in GPU shared memory.

Temporal Locality. Through analysis, we observe that gra-
dients and predictions of wide models can be formulated
as functions on certain intermediate scalars, denoted by
Accums, which can be aggregated from input features and
model parameters. Taking the LR model as an example:
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Fig. 2. Ilustration of cuWide execution. Note that the solid lines refer
to the Accum caching and the dotted lines refer to the model caching.
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where w are the model parameters, x, y are the inputs
and w x are the Accums. Such temporal locality of Accum
data during both stages implies that we can reduce the
global memory access for writting/reading intermediate
data by caching aggregated feature in shared memory.

Flow-based strategy. As illustrated in Figure 1(b), we per-
form a two-dimensional partition over the mini-batch, into
chunks over the sample dimension and segments over the
feature (i.e., model) dimension, respectively. In Figure 2,
each chunk is processed one-by-one and the Accum,
rather than gradient, is temporally stored in the shared
memory. In the backward phase, the update operation
uses these Accums to calculate gradients, thus enjoying
good temporal locality with accesses to the partial sums
being served by cache. At the same time, the forward and
backward phase read and update important parameters
from a model segment cached on shared memory, it
enjoys good spatial locality as well. The flow-based strategy
processes chunks in a streaming manner, and synchronize
the updates to the model when all chunks in a mini-batch
have been processed. In this way, the scheme exploits
spatial-temporal locality and GPU memory hierarchy to
optimize memory accesses of wide model.

Programming Abstraction. The general GPU machine
learning frameworks completely loses the locality access
pattern in wide model with the primitive of tensor ab-
stractions. cuWide provides a vertex-centric programming
model Aggregate-Loss-Apply (ALA), allowing to
express the execution of various wide models over a bi-
graph. In Figure 3, for each iteration of mini-batch SGD,
sample vertices represent samples, parameter vertices rep-
resent different features and edges represent the relations
between samples and features. Figure 4 shows the LR
implementation using ALA programming model.

System Implementation. To effectively utilize the GPU,
we further propose several GPU-oriented optimizations,
including feature-oriented data layout to enhance the data
locality, shared memory conflicts resolution and multi-
stream scheduling to overlap data transferring and kernel
computing. The source code has been made public at [4].
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Fig. 3. The ALA processing model LA interfaces.

IV. EXPERIMENTS

End-to-end comparison. Figure 5 shows the results of
comparing cuWide with stage-based solutions, includ-
ing TF and cuWide-stage (our C++ implementation). We
evaluate the LR performance on criteo-s, kddb and url
datasets. cuWide outperforms the others by a significant
margin (up to 36.1x for TF on kddb) due to the flow-based
strategy, which harnesses the spatial-temporal locality of
wide models to leverage the GPU memory hierarchy.
Breakdown comparison. We also provide breakdown
comparison to illustrate each caching mechanism’s con-
tribution. It reveals that the model caching and Accum
caching both improves the performance. For kddb, with
the Accum caching, cuWide achieves 4.9x speedup than
TF and 1.9x than stage-based training baseline. When
further applying model caching, cuWide further bring 7.4 x
speedup. More detailed experimental results are in [2].
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Fig. 5. Performance comparison with TensorFlow and cuwide-stage using
Nvida GTX 1080ti for LR with batch size = 1024
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