
HET-KG: Communication-Efficient Knowledge

Graph Embedding Training via Hotness-Aware

Cache

Sicong Dong†,∗, Xupeng Miao‡,∗, Pengkai Liu†, Xin Wang†,§, Bin Cui‡, Jianxin Li¶

†College of Intelligence and Computing, Tianjin University
‡School of Computer Science & Key Lab of High Confidence Software Technologies (MOE), Peking University

¶School of Information Technology, Deakin University
†{sicongdong, liupengkai, wangx}@tju.edu.cn ‡{xupeng.miao, bin.cui}@pku.edu.cn ¶jianxin.li@deakin.edu.au

Abstract—With the popularization and application of Artificial
Intelligence technology, knowledge graph embedding methods are
widely used for a variety of machine learning tasks. However,
most of the current knowledge graph embedding models are
trained with a large number of parameters and high computa-
tional time complexity. This becomes a main obstacle to apply
these existing models to large-scale knowledge graphs. To address
this challenge, we propose HET-KG, a distributed system for
training knowledge graph embedding efficiently. HET-KG can
reduce the communication overheads by introducing a cache
embedding table structure to maintain hot-embeddings at each
worker. To improve the effectiveness of the cache mechanism,
we design a prefetching algorithm and a filtering algorithm
for adaptively selecting hot-embeddings, and provide two kinds
of hot-embedding table construction strategies. To address the
issue of inconsistency between the local cached hot-embeddings
and the global embeddings, we also develop a hot-embedding
synchronization algorithm for dynamically updating the cache
embedding table, which can guarantee the inconsistency bounded
within a given threshold. Finally, extensive experiments are
conducted on three knowledge graph datasets FB15k, WN18,
and Freebase-86m. The experimental results show that HET-KG
achieves 3.7x and 1.1x speedup over the state-of-the-art systems
PyTorch-BigGraph and DGL-KE, respectively.

Index Terms—knowledge graphs, parameter server, distributed
knowledge graph embedding, cache

I. INTRODUCTION

In recent years, Knowledge Graphs (KGs) [24], [33], consist-

ing of entities and their relations, have been used to store

structured knowledge information and successfully applied to

many real-world applications, such as information extraction

[2], question answering [4], recommendation [16], [29], and

drug discovery [6]. To leverage the structured knowledge of

KGs in downstream applications, Knowledge Graph Embed-

ding (KGE) [1], [21], [30] has been proposed to embed the

entities and relations of a KG into continuous vector spaces.

Since KGE could capture the semantics of information in

knowledge graphs, it has demonstrated great success in many

∗ These authors contribute equally to this work and should be considered
co-first authors.

§ Xin Wang is the corresponding author.

machine learning tasks over KGs. However, the computational

cost of KGE training is expensive since KGE methods need to

calculate relevance scores between embeddings, and iteratively

optimize objective functions until convergence, which thus is

a computationally intensive task.

To reduce the computation time, several distributed KGE

training approaches and systems have been proposed by lever-

aging multiple computing units (e.g., cores, GPUs, machines).

For instance, the block-based approaches, such as PyTorch-

BigGraph (PBG) [13] and GraphVite [36], split the KG into

disjoint blocks and parallelize the computation of a subset of

the blocks across workers. However, these solutions lead to

high block swapping overheads. In addition, another line of

approaches have been exploited by utilizing the architecture

of Parameter Server (PS) [10]. For example, DGL-KE [34]

stores the embeddings on the parameter servers and uses

synchronous data parallelism training on the workers. To

reduce the communication cost during training process, DGL-

KE further enables co-located PS and min-cut-based graph

partition algorithms (e.g., METIS [12]) to distribute a knowl-

edge graph across workers. However, DGL-KE still suffers

from high network communication cost when the cluster size

increases, e.g., when DGL-KE with TransE model is used

to train a large-scale knowledge graph like Freebase-86m,

the network communication dominates more than 70% of the

end-to-end training time under our experimental environment,

which is shown in Table I.

The communication cost may become even more expensive

when the knowledge graphs contain a large number of entities

with high degrees [5], [23], this is because these entities

may have lots of related entities located at other workers. To

alleviate this issue, in this work, we will exploit the skew

distribution of node frequencies in KGs, by which we intend

to cache the most frequently accessed embedding (i.e., hot-

embeddings) at workers. Although the caching mechanism can

help to reduce the remote communication overheads, it faces

several technical challenges. Firstly, each worker has only

limited memory space. Thus, it requires to have a reasonable

1754

2022 IEEE 38th International Conference on Data Engineering (ICDE)

2375-026X/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDE53745.2022.00177

20
22

 IE
EE

 3
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
78

-1
-6

65
4-

08
83

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
53

74
5.

20
22

.0
01

77

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 01:44:19 UTC from IEEE Xplore. Restrictions apply.

TABLE I
WORKLOAD FOR TRAINING TRANSE ON FREEBASE-86M.

Edges Dimension Storage Space Communication Ratio

3× 10
5 400 275 MB 82.6%

3× 10
6 400 2.7 GB 85.4%

3× 10
7 400 27.5 GB 88.3%

3× 10
8 400 275.2 GB 88.7%

3× 10
8 50 34.4 GB 70.7%

3× 10
8 100 68.8 GB 73.5%

3× 10
8 200 137.6 GB 84.9%

3× 10
8 400 275.2 GB 88.7%

selection strategy to select and cache entities and relations

on each worker, so that the communication reduction can be

achieved. Secondly, it requires a well-designed approach to

handle the inconsistency between local embeddings cached on

workers and the global embeddings on the parameter server.

Otherwise, the local embeddings on the workers can only be

updated based on the caches on the local workers without

resorting to the remote updates from the other workers. The

inconsistency will become divergent after several iterations

during training, which can easily lead to the failure of conver-

gence. This is because the embeddings of some entities should

be jointly updated by different workers during training.

To tackle the above challenging problems, in this paper, we

propose a distributed knowledge graph embedding training

system, named HET-KG, by introducing cache embedding

tables at workers. To the best of our knowledge, this is the

first work to reduce the communication cost by utilizing cache

embedding table for distributed KGE training. Specifically, for

a given knowledge graph, we design a prefetching algorithm

that can sample positive and negative triples, construct mini-

batches, and obtain entities and relations used in each mini-

batch. To deal with the cache embedding table, we further

develop a filtering algorithm to dynamically select the top-k
entities and relations, pull these entity and relation embeddings

from the parameter server, and store them in the cache

embedding table. In the meanwhile, we devise a partial stale

synchronous algorithm by dynamically updating the cache

embedding table, which guarantees that the inconsistency be-

tween the local cached embeddings and the global embeddings

can be bounded within a given threshold. We also provide

the theoretical analysis about the convergence. Furthermore,

we present implementation details of the prototype system

HET-KG. Caching hot items have been extensively studied in

the context of graph embedding [19], feature stores [35], and

embedding-based parameter servers [32]. While the caching

technique in our work significantly defers from that in the

existing systems [17], [19], [32], [35] due to the differences

in the targeted research problems. Unlike these studies, both

cached and non-cached embeddings will be updated during

the training process in our problem. It not only requires to

find the most frequently accessed embeddings to utilize the

limited memory space, but also has to handle the embedding

inconsistency problem due to the updates.

Our contributions can be summarized as follows:

• In knowledge graph embedding, HET-KG is the first

work to reduce the communication overheads by intro-

ducing a cache embedding table structure to maintain

hot-embeddings.

• We design a prefetching algorithm and a filtering algo-

rithm for adaptively selecting the hot-embeddings, and

provide two kinds of hot-embedding table construction

strategies for HET-KG.

• We develop a partial stale synchronous algorithm for

dynamically updating the cache embedding table, and

provide the theoretical analysis to guarantee that the

inconsistency between the local cached hot-embeddings

and the global embeddings can be bounded within a given

threshold.

• Extensive experiments on large-scale knowledge graphs

verify the efficiency and scalability of the proposed sys-

tem. The evaluation shows that the training time of HET-

KG is 3.7x and 1.1x times faster than that of PyTorch-

BigGraph and DGL-KE, respectively.

The rest of the paper is organized as follows. Section II

summarizes the related work. Section III introduces the pre-

liminaries, problem statement, and our motivation. Section IV

describes our method in detail, followed by the system imple-

mentation in Section V. We show the experimental results in

Section VI, and conclude in Section VII.

II. RELATED WORK

Knowledge graph embedding has been well investigated in

recent years, which includes the different types of knowledge

graph embedding models, and the different kinds of knowledge

graph embedding systems.

Translational Distance Based Embedding Models. TransE

[1] is the initial work in this category, which is extended by a

series of following works, e.g., TransH [30], TransR [15], and

TransD [9]. TransE represents entities and relations as vectors

in the same space. TransH embeds entities and relations into

different hyperplanes, thus solving the problem that the vectors

of entities with different types have similar distances during

multi-relational embedding process, which cannot be solved

in TransE. TransR employs a hyperspace corresponding to

each relation rather than a hyperplane, which makes TransR

particularly successful in modeling complex realations but

sacrifices simplicity and efficiency of TransH. TransD uses

projection vectors to replace the projection matrix in TransR,

which significantly reduces time complexity while achieving

the same effect as TransR.

Semantic Matching Based Embedding Models. There are

several representative works in this line of research, including

RESCAL [21], DistMult [31], HolE [20], and ComplEx [27].

RESCAL associates each entity with a vector to capture its

latent semantics, and represents each relation as a matrix that

models the pairwise interactions between factors. DistMult

restricts the matrices mentioned in RESCAL to diagonal

1755

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 01:44:19 UTC from IEEE Xplore. Restrictions apply.

Positive samples

Negative samples

Knowledge graph
KGE models

Embedding feature
Sampling

Original space

Entity embeddings

Relation embeddings

Translated space

r
rh1 t1

h1 t1

h1 t2

h2 t1

r

r

(h1, r, t1)

(h1, r, t2)

(h2, r, t1)

Mr

r

r

Mrt2

Mrt1

h1

h2

t1

t2

Mrh2

Mrh1

X

Y

Z

Z

Y

X

Fig. 1. The training process of KGE.

matrices to simplify RESCAL, which allows DistMult to

handle only symmetric relations. HolE uses a circular correla-

tion operation to compress pairwise interactions in RESCAL,

which makes it have both the expressive power of RESCAL

and the simplicity of DistMult. ComplEx extends DistMult by

providing complex-valued embeddings, allowing it to model

asymmetric relations more accurately.

Standalone Embedding Systems. KB2E [15] is a graph em-

bedding toolkit that integrates a unified implementation of var-

ious KGE models. OpenKE [7] applies GPU acceleration and

parallelization mechanisms to speed up the training process

based on KB2E. However, OpenKE remains a memory-based

framework on a single machine and cannot support representa-

tion learning of large-scale knowledge graphs. GraphVite [36]

is a hybrid CPU-GPU system for training node embedding

that reduces the cost of synchronization between CPUs and

GPUs through an effective collaboration strategy, enabling it

to be up to 50 times faster than previous systems without

sacrificing performance. In order to support large-scale knowl-

edge graphs, Mohoney [19] et al. proposed Marius, a single-

machine system for efficiently training of graph embeddings.

Marius implements the graph embedding training on a single

machine, which suffers from the PCIe bandwidth bottleneck

between CPU and GPU. It treats a graph as a partitioned

matrix and swaps partitions based on the proposed traversal

ordering algorithm.

Distributed Embedding Systems. PyTorch-BigGraph [13]

(PBG) uses graph partitioning to train large embeddings on

either a single machine or a cluster, which allows it to scale to

graphs with billions of edges. However, these approaches suf-

fer from high data-transfer overheads and low computational

efficiency. DGL-KE [34] proposes various novel optimization

strategies to increase data locality, reduce network transmis-

sion, and achieve high operation efficiency. DGL-KE applies

multi-processing, multi-GPU, and distributed parallelism to

accelerate the training of knowledge graphs with millions

of nodes and billions of edges, providing a 2-5x speedup

compared to GraphVite and PBG.

Remarks. The above embedding models or standalone sys-

tems tend to reach the bottleneck due to the expensive cost

when the scale of knowledge graph grows. Although the

above distributed embedding systems can alleviate the com-

putational challenge and improve the efficiency of embedding

big knowledge graphs, they still face challenges in high

network communication overhead. This is because the existing

distributed systems simply combine the knowledge embedding

models and parameter servers. Thus, the communication cost

will become expensive with the increase of number of workers,

especially in a low bandwidth network environment. To the

best of our knowledge, there is a lack of an optimization

method for distributed knowledge graph embedding to improve

the training efficiency without sacrificing the training accuracy.

III. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we will present the preliminaries, revisit

two existing studies of distributed embedding systems, and

describe the targeted problem to solve in this work.

To make the presentation clear, in this paper we use a bold

lower-case letter x to represent an embedding vector, and

[x]i denotes the i-th entry of x. ‖x‖lj denotes lj norm of

vector x, e.g., ‖x‖l1 is the l1 norm of x. diag(x) represents

diagonal matrix with its i-th diagonal entry denoted as [x]i. M
represents a matrix where its ij-th entry is denoted as [M]ij .

A. Preliminaries

Knowledge Graph. A knowledge graph can be represented

as G = {(h, r, t) | h, t ∈ E, r ∈ R}, where E is the entity set

and R is the relation set. The number of entities and relations

are represented as ne and nr.

Knowledge Graph Embedding. The goal of knowledge graph

embedding (KGE) is to learn vector embedding h, t ∈ R
d and

r ∈ R
d, where d is the dimension. In general, KGE models

assign a score to each triple (h, r, t) based on the embedding

(h, r, t). KGE models target to maximize the score of triple

(h, r, t) ∈ G and minimize it for (h, r, t) /∈ G.

In addition, a loss function is often designed to encourage

discrimination between positive triples and negative triples

in knowledge graphs. There are two commonly used loss

functions:

• the logistic loss

L =
∑

(h,r,t)∈ξ∪ξ′

log(1 + exp(−y · fr(h, t)))

• the ranking loss

L =
∑

(h,r,t)∈ξ

∑

(h′,r′,t′)∈ξ′

max(0, γ − fr(h, t) + fr(h
′
, t

′))

1756

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 01:44:19 UTC from IEEE Xplore. Restrictions apply.

Here, ξ and ξ′ are the set of positive triples and negative triples,

respectively. y is the label of a triple where y is assigned as

+1 when (h, r, t) appears in ξ, otherwise it is set as −1. A

common strategy to obtain negative samples from real triples

is to corrupt a triple by changing its head entity or tail entity.

For a triple (h, r, t), replacing its head entity h and tail entity

t yields negative samples (h′, r, t) and (h, r, t′), respectively,

where h′ and t′ are randomly sampled entities. Potentially,

negative samples (h, r′, t) can also be obtained by replacing

the original relation r with randomly sampled relation r′. As

shown in Fig. 1, A KGE model takes a knowledge graph as

input, generates positive and negative samples for training, and

presents entities and relations to embedding vectors.

B. Revisit PBG and DGL-KE

Traditional knowledge graph embedding methods tend to reach

the bottleneck of a single machine system when the scale of

a knowledge graph becomes large. To address this challenge,

there are two existing distributed knowledge graph embedding

systems, which will be revisited in this section.

PyTorch-BigGraph (PBG). The development of PBG focuses

on scalability and distributed training on clusters, and its

implementation steps include:

(1) divide the adjacency matrix of the knowledge graph

into disjoint partitions and store them on the shared file

system, then start a lock server for scheduling workers to

avoid conflicts;

(2) each worker requests an edge partition from the lock

server, load node partitions and edge partitions from the

shared file system;

(3) perform training process using multiple threads without

inter-thread synchronization, update the entity embed-

dings locally, and push the gradients of the relation

embeddings to a shared parameter server;

(4) save the partitions to the shared file system that are no

longer in use.

PBG treats entity embeddings and relation embeddings as the

sparse model parameters and the dense model parameters,

respectively. However, it will suffer from both high com-

munication overhead and low computational efficiency if the

dense relation embeddings are processed by using the above

partitioning methods, especially for knowledge graphs with

many relations.

DGL-KE. DGL-KE adopts a parameter server for distributed

training. The training process starts with a preprocessing step

to partition a knowledge graph and follows with mini-batch

training, whose specific training steps include:

(1) each worker samples from a local partition to obtain

a mini-batch and corrupts positive triples to construct

negative triples;

(2) pull embeddings required in the mini-batch from the

parameter servers;

Fig. 2. Distribution of the number of entity and relation embeddings used
for KGE in an epoch.

(3) perform forward computation and back propagation to

compute the gradients of the embeddings;

(4) push the gradients to the parameter servers, which uses

the gradients to update the embddings involved in the

mini-batch.

Compared with PBG, DGL-KE performs sparse embedding

reads and sparse gradient updates on relation embeddings.

This strategy significantly reduces the amount of parameters

transferred in distributed training. Nevertheless, DGL-KE only

alleviates the problem of high network overhead to a certain

extent. As the scale of the knowledge graph and the embedding

dimension increase, the proportion of time taken by network

communication gradually grows, which is shown in Table I.

Specifically, DGL-KE simply uses the parameter server for

KGE, maintains all embeddings on the parameter server and

conducts computation on the workers. This mechanism may

incur high communication cost because in an each iteration

the workers need to extract all embeddings used in the training

phases from the parameter server. It becomes a major bottle-

neck for DGL-KE if there is a large number of parameters to

be transferred.

C. Our Problem and Motivation

In order to efficiently obtain the embeddings of large-scale

knowledge graphs, in this work, our goal is to optimize

the distributed training efficiency of KGE without sacrificing

accuracy. By so doing, we expect to develop HET-KG that

reduces the communication overhead during distributed KGE

training.

In order to achieve this goal, we conduct a micro-benchmark

to analyze the features of several knowledge graph datasets,

and statistics on the frequency of remote communications for

different embeddings in an epoch. As shown in Fig. 2, our

finding is that only a few critical embeddings are employed

regularly in training phases. As a result, our motivation is to

reduce communication overhead by preserving these critical

embeddings on each worker. However, maintaining crucial

embeddings may incur additional issues on how to select and

1757

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 01:44:19 UTC from IEEE Xplore. Restrictions apply.

utilize crucial embeddings in KGE training, and how to man-

age crucial embeddings to reduce the impact of inconsistency

across different replicas.

IV. METHODOLOGIES

In this section, we first provide an overview of the HET-

KG architecture in Section IV-A. And then, we present the

approaches of utilizing “hot-embeddings” to train a KGE

model in Section IV-B, and bound the cache staleness in

Section IV-C.

A. System Overview

Large-scale knowledge graphs usually have millions of entities

and billions of edges. However, as illustrated in Fig. 3, our

proposed HET-KG system basically follows the traditional PS

architecture. In fact, some of existing knowledge embedding

systems also prefer to use the PS because of its excellent

concurrency and scalability. Due to the centralized parallel

training paradigm of PS, the network communication is apt

to become the major bottleneck of the entire training process.

In our approach, we adopt the co-located PS architecture to

improve the communication efficiency of PS, which has been

analyzed in [11]. In co-located PS, each server is co-located

with the workers physically to maximize the utilization of

network bandwidth. Before the training iterations start, we

also partition KG with the METIS [12] algorithm, which has

been widely used in other distributed graph learning systems in

order to reduce the amount of edges between nodes at different

workers.

However, the communication overheads still dominate the

KGE training process due to the large amounts of remote

embedding access even after the graph partition step. To

address this issue, unlike the traditional PS architecture, HET-

KG first involves the hot-embedding table structure to cache

the most frequently used entities and relations embeddings

at each worker. Since the embedding access in KGs follows

the skew distribution as shown in Fig. 2, HET-KG proposes

the prefetching and filtering techniques to adaptively select

these hot-embeddings during the training process. After that,

HET-KG enables the workers to read these hot-embeddings

locally and avoid the majority of remote embedding com-

munication. Furthermore, HET-KG provides a hot-embedding

synchronization algorithm, which guarantees the convergence

performance.

B. System Workflow

We first introduce the detailed workflow of HET-KG and

then discuss the main differences with traditional PS-based

KGE training systems. Before the training starts, the KG

has been partitioned by the graph partition algorithm (e.g.,

METIS) and each worker accommodates a subgraph of triples,

including both entities and relations. According to the graph

partitioning results, the knowledge embeddings are initialized

by the corresponding parameter servers on these workers. At

this time, the hot-embedding tables are empty and will be

dynamically constructed during the training iterations.

Algorithm 1: prefetch

Input : worker id i, subgraph Gi, iteration t, prefetch

threshold D
Output: sample list Ls, entity and relation list Ler

1 Initialize empty lists Ler, Ls;

2 for iteration j ← t, . . . , t+D do

3 ξi
′

j ← ∅;

4 ξij ← sample(Gi);

5 for (h, r, t) ∈ ξij do

6 ξi
′

j ← ξi
′

j ∪ {(h′, r, t), (h, r, t′)};

7 for (h, r, t) ∈ ξij ∪ ξi
′

j do

8 Ler.append(h, r, t);

9 Ls.append((ξij , ξ
i′

j));

10 return Ls, Ler

Hot-Embedding Table Construction. In HET-KG, we con-

struct and adaptively adjust the hot-embedding table according

to the training workloads. The construction consists of two

main processes: prefetching and filtering. Algorithm 1 presents

the details of prefetching. In each iteration, the worker i
samples positive triples ξij from the subgraph Gi (line 4),

and generates negative triples ξi
′

j (line 5-6). Then, the worker

de-duplicates the entities and relations contained inside each

mini-batch and stores the preload results l (line 7-9).

In the filtering algorithm, we use the frequency of entities

and relations in the preloaded list as the indicator of their

importance. Algorithm 2 presents the process of filtering, the

worker counts the frequency of entities and relations in the

preloaded list (line 3-8). After that, the entities and relations

are sorted in descending order by their frequencies in list

Lnum (line 9). Finally, the hot-embedding identifier table

stores the top-k entities and relations (line 10-12), and pull

embeddings from the parameter servers (line 13).

A unique challenge in KGE comes from the node heterogene-

ity of the knowledge graphs. As shown in Fig. 2, the frequency

of relations is usually higher than that of entities. Ignoring such

node heterogeneity when constructing the hot-embedding table

could lead to caching preference on relational embeddings.

To address this issue, HET-KG fixes the percentage of entity

and relation embeddings in the hot-embedding table to avoid

the uneven update frequencies. We study the effect of node

heterogeneity in Section VI.

Specifically, we manage to select the most important embed-

dings to cache and provide two kinds of hot-embedding table

construction strategies.

1) Constant partial stale: In order to obtain high-quality hot

embeddings, we analyze the sampling process on a knowledge

graph. When a uniform sampler generates the samples from

knowledge graphs, the entities with more connected edges

and relations that appear more frequently would be more

likely to be fetched. Taking the FB15k dataset as an example,

1758

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 01:44:19 UTC from IEEE Xplore. Restrictions apply.

Worker

Subgraph 1 Subgraph 2

Compute
Worker

Parameter server
Entity

embeddings
Relation

embeddings

Remote pull
Remote push

Local pushh
Local pull

pp

Partition

Synchronize

local embeddings

remote embeddings

Batch i+1Batch i Batch i+2

Parameter server
Entity

embeddings
Relation

embeddings

Hot-embeddings

⋯

Hot-embeddings

embeddings

frequency

Computing node 1 Computing node 2

⋯

Hot-embeddings

⋯

Hot-embeddings

⋯

Knowledge graph

Prefetch

Prefetch

Filter

Filter

Fig. 3. The overview of HET-KG.

Algorithm 2: filter

Input : entity and relation list Ler, cache table size k
Output: hot-embedding id set Ser, hot-embedding set

Semb

1 Ser, Semb ← ∅;

2 Initial an empty list Lnum;

3 foreach id in Ler do

4 if id /∈ Ser then

5 Lnum[id] ← 1;

6 Ser ← Ser ∪ {id};

7 else

8 Lnum[id] ← Lnum[id] + 1 ;

// Count the frequencies

9 Ler ←descSort(Lnum, Ler);

// Sort Ler by the frequencies in Lnum

in descending order

10 for j ← 1, . . . , k do

11 id ← Ler[j];
12 Ser ← Ser ∪ {id};

13 Semb ← pull(Ser) ; // in Algorithm 4

14 return Ser, Semb

the top 1% of entities and relations with the highest access

frequency occupy 6% and 36% of the embedding usage,

respectively. Based on this observation, HET-KG prefetches

the entire subgraph and counts the frequency of all entity

and relation embeddings. Since each worker only has limited

memory space, we filter the top-k hot-embeddings to construct

the cache embedding table. It is intuitive that caching high-

frequency embedding will yield greater benefits in terms of

reducing more network communications. With constant partial

stale (CPS), hot-embeddings in the cache are fixed and will

not be replaced during the training process.

2) Dynamic partial stale: In constant partial stale, we assume

that the distribution of embedding visits in each mini-batch is

similar to the global distribution. Therefore, the top-k hot-

embeddings are identified before training. In fact, due to

the randomness of sampling, hot-embeddings in some mini-

batches may be those that appear less frequently in global

embeddings, which makes the lower bound of the CPS strategy

lower. To solve this problem, dynamic partial stale (DPS)

prefetches D consecutive iterations of input samples in ad-

vance, filters the top-k embeddings based on the access fre-

quency, and updates the hot-embedding table. Consequently,

the DPS strategy could improve the cache hit ratio as it

guarantees that the hot-embeddings reflect the embedding

accessing pattern in a shorter term and further improves the

reduction of network communications.

Hot-Embedding Oriented Training. With the hot-embedding

table, each worker could avoid large amounts of remote

communications for the hot-embeddings. During the training

iterations, each worker iterates on the following workload:

(1) sample from a local partitioned subgraph to obtain a

mini-batch of data samples and corrupt positive triples

to construct negative samples;

(2) load the entity and relation embeddings from the hot-

embedding table and pull the remaining required em-

beddings from the parameter server for the current mini-

batch;

(3) perform forward computation and back propagation to

compute the gradients of the embeddings;

(4) update the corresponding gradients to the involved hot-

embeddings and push all the embedding gradients of this

iteration back to the parameter server.

Note that, for CPS, the hot-embedding table is fixed during

the training iterations. While for DPS, the hot-embedding

table will be periodically updated, i.e., every D iterations, to

achieve higher cache hit ratio. Fig. 4 presents an example

to show the workflow of CPS and DPS (D = 3). For a

KGE training containing 6 iterations, CPS constructs the hot-

embedding table before training and uses the fixed table for all

6 iterations. For DPS with D = 3, the worker reconstructs the

hot-embedding table every 3 iterations. Compared to CPS, the

dynamic hot-embedding construction mechanism results in a

higher average cache hit ratio for DPS.

The key difference between the existing KGE training systems

(e.g., DGL-KE) and HET-KG is the stage of pulling embed-

dings. HET-KG enables each worker to read hot-embeddings

in the table that could be stale compared to their replicas on

the other workers. Although using the hot-embeddings could

significantly reduce the network communication, it might

affect the final model quality. In the worst case, the worker

may miss all the related embedding information from the other

workers. To balance the trade-off between the communication

efficiency and the model quality, we propose a hot-embedding

1759

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 01:44:19 UTC from IEEE Xplore. Restrictions apply.

Subgraph 1

Batch Batch Batch Batch Batch Batch

Local

Remote

Embeddings

5

3
2

Frequency

(global)

Embeddings

3

0

3
Frequency

(batch 1-3)

embeddings
0

2 2

Frequency

(batch 4-6)

Hot-embeddings

⋯

Hot-embeddings

⋯

Hot-embeddings

⋯

Hot-embeddings

⋯

Hot-embeddings

⋯

Local

Remote

Remote

Local

Constant Partial Stale

Dynamic Partial Stale

hit 100% hit 100% hit 100% hit 50% hit 100% hit 0%

Total 75%

Total 100%

hit 100% hit 100% hit 100% hit 100% hit 100% hit 100%

Sample

Fig. 4. Example of CPS and DPS (D = 3).

synchronization algorithm to guarantee the convergence per-

formance.

Hot-Embedding Synchronization Algorithm. We manage

to maximize the local access of the hot-embeddings and

minimize the inconsistency between the local hot-embeddings

and their replicas on the other workers. Based on this target,

HET-KG proposes a hot-embedding synchronization algorithm

for the distributed training process. Our intuition is to periodi-

cally synchronize hot-embeddings with the parameter server to

prevent the hot-embedding table from the staleness extension

over a given threshold.

Algorithm 3 and 4 present the details of how our method

works. In partial stale, workers undertake distributed training

tasks using the ASP protocol. Before training, the worker

divides knowledge graph G into n partitions. When the

iteration reaches the fetch threshold D, the worker prefetches

samples, entities, and relations from the subgraph Gi, and

then constructs the hot-embedding table (line 5-7). When

the iteration reaches the specified synchronization threshold,

the latest version of the hot-embeddings are pulled from the

parameter server and are used to update the caches (line 8-9).

Subsequently, the worker loads samples from preload list Ler,

fetches embeddings from the cache and the parameter server

(line 10-13), and then computes the loss function (line 14-16).

When the loss L > 0, i.e., the update condition is satisfied,

the workers begin to compute gradients of the embeddings

using back propagation, and then push back gradients to the

parameter server (line 17-19). The parameter server continu-

ously fetches the elements of the message queue and employs

the AdaGrad [3] optimizer to update the embedding using

gradients (line 1-4), or pushes the embedding to the target

worker (line 5-7).

Algorithm 3: Hot-embedding Synchronization (Worker)

Input : knowlege graph G, max number of training

iterations T , number of workers n, learning rate

ℓ, margin γ, batch size m, hot-embedding table

size k, prefetch threshold D, synchronization

threshold K
Output: Embedding set S
1 G1, . . . , Gn ← partition(G);

2 foreach Worker i ← 1, . . . , n do

3 Sca, Srem ← ∅;

4 for iteration j ← 0, . . . , T − 1 do

5 if t mod D = 0 then

6 Ls, Ler ← prefetch(i, Gi, t,D);

7 Ser, Semb ← filter(Ler, k);

8 if t mod K = 0 then

9 Semb ← pull(Ser); // in Algorithm 4

10 ξij , ξ
i′

j ← Ls[t mod D];

11 foreach (h, r, t) ∈ ξij ∪ ξi
′

j do

12 Sca ← Sca ∪ (Semb ∩ {h, r, t});
// Load hot-embeddings

13 Srem ← pull(S\Sca);

14 L ← 0;

15 for j ← 1, . . . ,m do

16 L ← L+ γ + fr(h, t)− fr(h
′, t′);

17 if L > 0 then

18 gt ← ▽L;

19 push(gt) ; // in Algorithm 4

20 S ← pull(E ∪R);

21 return S

Besides the embedding updates, we highlight another unique

challenge in knowledge graph embedding training as follows.

It comes from the node heterogeneity of the knowledge graph.

As shown in Fig. 2 of Section III, the frequency of relations

is usually higher than that of entities. Ignoring such node

heterogeneity when designing the caching algorithm could

lead to caching preference on relational embeddings. Then it

results in uneven update frequencies and affects the model

convergence performance. In contrast, HET-KG takes both

entities and relations in the knowledge graph into account and

caches them using separate mechanisms.

Discussion on existing deep learning frameworks. HET-KG

applies the hot-embedding caching to accelerate knowledge

graph embedding training. Existing works have explored sim-

ilar optimizations in deep learning frameworks. For example,

Morteza et al. [22] proposed to cache the input data into

GPU over PyTorch to accelerate GCN training and perform

sampling inside the GPU, based on the original training

pipeline. Meanwhile, existing works [32], [35] only cache the

frequently accessed raw data (e.g., photos, features), which are

quite straightforward and cannot meet the requirement for our

1760

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 01:44:19 UTC from IEEE Xplore. Restrictions apply.

Algorithm 4: Hot-embedding Synchronization (Server)

1 Function push(gt):

2 foreach x ∈ S do

3 wt+1 ← wt + gt ⊙ gt ;

4 xt+1 ← xt − ℓ√
wt+ε

⊙ gt;

// Update embeddings with AdaGrad

5 Function pull(Ser):

6 Semb ← getEmb(Ser);
7 return Semb;

KGE settings. Unlike these studies, in HET-KG, both cached

embeddings and non-cached embeddings will be continuously

updated during the training process. It not only requires to

find the most frequently accessed embeddings to utilize the

limited memory space, but also has to handle the embedding

inconsistency problem due to the updates, which have been

successfully addressed in our approach.

Discussion on related systems. HET [18] also applies the

embedding caching technique in the domain of embedding

and graph neural networks. However, HET is different from

HET-KG in three aspects: 1) Different research problems:

HET targets recommendation systems while HET-KG is for

knowledge graph embedding training. As aforementioned,

the node heterogeneity makes existing methods designed for

general graphs fail on knowledge graphs. 2) Different caching

strategies: HET adopts the standard LFU and LRU strategies

while HET-KG introduces a novel prefetching and filtering

step to dynamically determine the optimal caching embeddings

during the training process. Such design makes our cache hit

ratio much higher than those strategies, as shown in Table VI.

3) Different cache consistency protocols: Unlike relying on the

complex fine-grained embedding clocks in HET, we devise a

novel hot-embedding synchronization algorithm in HET-KG,

which is simple but effective. It only relies on coarse-grained

execution steps, which has shown significant performance

improvements and could be easily integrated into the existing

systems like DGL-KE.

C. Convergence Analysis

The main challenge of using partial stale synchronous al-

gorithm is the sacrifice of accuracy due to inconsistency

between local cache embeddings and the global embeddings

on accuracy during asynchronous training [8]. In each training

stride, the worker pulls the latest version of hot-embeddings in

the first iteration, using them until the next training stride. At

this stage, even if these hot-embeddings are updated by other

workers, the current node will still use the stale version of the

hot-embeddings for training. HET-KG brings such asynchrony

into the training process and bounds the degree of hot-

embeddings asynchrony with a fully synchronization step per

P iterations. Bounded staleness is an effective technique for

mitigating the convergence problem by employing lightweight

synchronization and has been widely used in many distributed

training algorithms [8], [14], [17] and systems [18], [19], [26].

The theoretical guarantee and analysis on the staleness bound

is the most crucial part in asynchronous algorithms and

systems (e.g., SSP [8]). With such a staleness bound, it is easy

to analyze the impacts on the variance of the gradients, which

can be used to measure the difference between stale model

and the fully synchronous model during the convergence

process. Given the bounded staleness assumption, the ergodic

convergence rate for Algorithm 3 and 4 achieves O(1/
√
mT),

where m is the batch size and T is the iteration number.

Proof Sketch. Before our analysis, we make the following

assumptions, which are commonly used in the existing work

[8]:

(1) the stochastic gradient g is unbiased;

(2) the variance of stochastic gradient is bounded by σ;

(3) the gradient function ▽(·) is L-Lipschitzian;

(4) the delayed model versions are bounded by K.

Under the above assumptions, we could prove that the

upper bound of the ergodic convergence rate [14] is

O(2(f(x1)−f(x∗))+ℓ2
mℓ1

) (ℓ1 and ℓ2 are functions of learning rate

ℓ), when the staleness bound K has certain relationship with

ℓ. After setting the learning rate ℓ to a constant, we could

further prove that the upper bound of the convergence rate is

4
√

(f(x1)−f(x∗))L
mT

σ, when T ≥ 4(f(x1)−f(x∗))mL

σ2 (K + 1)2.

Therefore, when the total iteration number T is greater than

O(K2), the convergence rate achieves O(1/
√
mT).

V. IMPLEMENTATION

In this section, we describe the implementation details of our

prototype system, which is built on top of PyTorch [13] and

DGL-KE [34], and relies on basic operations in DGL [28],

such as communication, sampling, shared memory, etc., and

deep learning libraries such as PyTorch for tensor operations.

Cache Implementation. Our proposed approach relies on

caches to maintain hot-embeddings. Distributed KGE in this

paper is executed using an asynchronous parallel algorithm, so

we maintain a cache at each worker independently, which is

updated every P iterations. P is defined as a hyperparameter,

and the hot-embeddings stored in the cache will be determined

by the partial stale synchronous algorithm. In constant partial

stale, before the training starts, the worker first prefetches

the mini-batch in all subsequent iterations and uses the top

k embeddings with the highest number of occurrences as

the fixed hot-embeddings. During the training process, the

workers pull the latest version of the hot-embeddings from

the parameter server every P iterations and update the caches.

In dynamic partially stale, the workers prefetch the samples

of the following D iterations and use the top k embeddings

with the highest number of occurrences among them as the

hot-embeddings for the subsequent D training iterations. The

workers pull hot-embeddings from the parameter server every

1761

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 01:44:19 UTC from IEEE Xplore. Restrictions apply.

P iterations and reconstruct the cache embedding table after

D iterations.

Parameter Server. We use the traditional parameter server

architecture for distributed training. The parameter server is

implemented by the C++-based distributed key-value store

(KVStore) provided in DGL, where the complete embeddings

are automatically divided into multiple parts and stored in the

training cluster. HET-KG starts multiple server processes on

each machine for load balancing, and these servers collec-

tively access the entity and relation embeddings stored locally

through shared memory.

The communication between parameter server and workers

can be divided into two categories. Local communication is

used for workers to pull parameters and push gradients from

the local server via localPull() and localPush() interfaces,

respectively, which are implemented by shared memory. The

purpose of remote communication is to pull parameters and

push gradients across machines via remotePull() and re-

motePush() implemented by C++-based interfaces provided

by DGL. Workers adopt the asynchronous parallel algorithm

for training, and communicate with the parameter server

asynchronously without waiting for each other. In order to

get a consistent accuracy, workers are fully synchronized after

every few thousand mini-batches, the detailed discussion is in

[34].

Graph Partitioning. In distributed training, knowledge graph

triples are partitioned and stored on different machines, and

the triples stored on one machine are classified as local triples

and cross triples. For local triples, their head and tail entity

embeddings are stored locally, while for cross triples, their

head and tail entities may be stored in other machines. To

reduce the communication required for the mini-batch training

process due to cross-machine pulling of entity embeddings,

we use the METIS [12] algorithm to partition the knowledge

graph. In a cluster of n machines, the knowledge graph is

divided into n partitions by the METIS method, which are

stored in the cluster. Compared with random partitioning,

METIS significantly reduces the network communication for

pulling entity embeddings across machines, and more details

are discussed in [34].

Negative Sampling. KGE requires both positive and negative

triples for training. Positive triples are sampled directly from

the knowledge graph, while negative triples are obtained by

randomly corrupting head or tail entities of positive triples. In

[1], [15], each positive triple is corrupted bn times indepen-

dently. For a d-dimensional embedding, each mini-batch of

size bp, the time complexity of sampling is O(bpd(bn + 1)).
To reduce the complexity, we use a batch negative sampling

strategy similar to that in PBG and DGL-KE. Positive mini-

batch is divided into k sets with size of bc, and the triples

in the same set are corrupted together. This sampling method

reduces the complexity to O(bpd+ bpkd/bc).

VI. EXPERIMENTS

In this section, we conduct experiments on three knowledge

graphs, compare HET-KG with the state-of-the-art distributed

KGE systems, i.e., PBG and DGL-KE. Then, we show how

the configurations of our hot-embedding synchronization al-

gorithm affect the staleness, and discuss the trade-off between

accuracy and performance.

A. Experimental Settings

Hardware and Software Setup. The experiments were con-

ducted on a cluster of 4 machines, each with 32 Intel(R)

Xeon(R) cores and 512 GB of RAM. The distributed envi-

ronment consists of 4 machines with a network bandwidth

of 1Gbps. The operating system used for the experiments is

CentOS 7.6, where the Python version is 3.6.8 and PyTorch

version is 1.9.1. When comparing the performance with base-

lines, the version of systems we use are PBG (v1.0.0) and

DGL-KE (v0.1.0).

Datasets. We use three datasets to evaluate the performance

of HET-KG against that of DGL-KE and PBG. Table 3 shows

various statistics for these datasets. The FB15k and WN18

datasets are standard benchmarks for evaluating KGE methods.

FB15k and WN18 are derived from Freebase and WordNet,

respectivly. The Freebase-86m (Freebase-86m) dataset is a

large-scale knowledge graph, which contains general facts

extracted from Wikipedia. We use the same splits by following

the evaluation in [25] to deal with FB15k and WN18, and use

a 90/5/5 train, validation, and test split in Freebase-86m. All

datasets are downloaded from [34].

Baselines. To the best of our knowledge, PBG and DGL-KE

are the state-of-the-art knowledge graph embedding systems

which support distributed training. Our method relies solely

on the CPU for computation. To ensure fair comparison, we

do not compare with GPU-based systems, such as GraphVite

and Marius.

Knowledge Embedding Models. TransE and DistMult are

two of the most prominent works in the translational distance

models and semantic matching models, respectively. On the

benchmark datasets FB15k and WN18, we use TransE and

DistMult, and on the large-scale dataset Freebase-86m we use

TransE. These models are chosen to match the evaluation of

Lerer et al. [13] and Zheng et al. [34].

Hyperparameters. In order to ensure a fair comparison, we

utilize the same hyperparameters in each system rather than

modifying them individually. Table II shows the hyperparam-

eters utilized in the experiments. The optimizers of the system

are all AdaGrad [3] optimizers. Based on past experience,

it can get embeddings of greater quality than SGD. The

problem with the AdaGrad optimizer is that it needs to save

the historical gradients of each parameter separately, which

increases the memory usage.

Evaluation Metrics. We evaluate the performance of the

different KGE models using a link prediction task. Datasets

1762

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 01:44:19 UTC from IEEE Xplore. Restrictions apply.

TABLE II
KNOWLEDGE GRAPHS USED FOR EVALUATION.

Dataset # Vertices # Edges # Relations Size Hyperparameters

FB15k 14,951 592,213 1345 52 MB d = 400, lr = 0.1, b = 32, nt = 8, FilteredMRR

WN18 40,943 151,442 18 7.8 MB d = 400, lr = 0.1, b = 32, nt = 8, FilteredMRR

Freebase-86m 86,054,151 338,586,276 14,824 275.2 GB d = 400, lr = 0.1, b = 512, nt = 128, ne = 1000

are splited into training, validation, and test subsets. We assess

the performance by using the standard metrics [9] of Hit@k

(k ∈ {1, 3, 10}), Mean Rank (MR), and Mean Reciprocal

Rank (MRR). All these metrics are derived by comparing

how the score of a positive triple relates to the scores of

its associated negative triples. Formally, they are defined as

Hits@k = 1
|G|

∑|G|
i=1 Rranki≤k, MR = 1

|G|
∑|G|

i=1 ranki, and

MRR = 1
|G|

∑|G|
i=1

1
ranki

, where ne is the total number of

positive triples and Rranki≤k is 1 if ranki ≤ k, otherwise

it is 0. Hits@k and MRR are between 0 and 1, whereas MR

ranges from 1 to Σ
|G|
i |Si|.

B. Evaluation on accuracy

1) Results on FB15k: As shown in Table III, PBG achieves the

highest training accuracy and also takes the longest time. HET-

KG has a similar implementation as DGL-KE, so it obtains

a comparable accuracy to DGL-KE with less training time.

Since HET-KG is not designed for small knowledge graphs,

the optimization technique is less effective. Even so, HET-

KG is able to obtain embeddings of comparable quality to the

existing state-of-the-art systems in much less time.

TABLE III
LINK PREDICTION RESULTS ON FB15K.

System Model MRR Hits@1 Hits@10 Time(s)

PBG TransE 0.582 0.429 0.818 1074.1

DGL-KE TransE 0.570 0.433 0.799 483.7

HET-KG-C TransE 0.569 0.429 0.804 465.9

HET-KG-D TransE 0.564 0.422 0.803 418.6

PBG DistMult 0.681 0.544 0.849 1147.0

DGL-KE DistMult 0.673 0.560 0.850 1160.2

HET-KG-C DistMult 0.642 0.510 0.839 731.9

HET-KG-D DistMult 0.662 0.550 0.836 742.1

2) Results on WN18: Similarly, on the benchmark WN18

dataset, the TransE and DistMult models were trained for 60

epochs on the systems using the same configuration as DGL-

KE. Table IV gives the results of link prediction, it can be seen

that HET-KG can achieve a higher quality of model training.

The proposed methods (both CPS and DPS) have better

training efficiency than PBG and DGL-KE for both TransE

and DistMult models. Since the WN18 dataset has a fewer

number of types of relations, in the cache utilized by HET-

KG, the relations appear more densely, and the use of partial

stale synchronous algorithm can save more communication

overhead and thus reduce the training time while ensuring the

accuracy. However, since DPS needs to dynamically prefetch

and count the entities and relations in the later iterations of

training and modify the contents of the caches, the cost of

prefetching is higher than the cost of computing on a small

dataset, so the training time using DPS is slightly higher than

that using CPS. It is further shown that by prefetching and

caching, HET-KG can obtain better model training results

when training specific datasets with certain characteristics,

such as the number of different relations is much less than

that of entities.

TABLE IV
LINK PREDICTION RESULTS ON WN18.

System Model MRR Hits@1 Hits@10 Time(s)

PBG TransE 0.722 0.545 0.956 477.4

DGL-KE TransE 0.715 0.548 0.954 184.3

HET-KG-C TransE 0.720 0.552 0.955 163.0

HET-KG-D TransE 0.719 0.552 0.954 167.7

PBG DistMult 0.889 0.840 0.954 1177.6

DGL-KE DistMult 0.881 0.840 0.931 238.3

HET-KG-C DistMult 0.877 0.835 0.927 232.1

HET-KG-D DistMult 0.885 0.845 0.933 251.4

3) Results on Freebase-86m: To verify the applicability and

superiority of HET-KG for large-scale knowledge graph train-

ing, we train the TransE model on Freebase-86m dataset for

10 epochs. As shown in Table V, efficiency and accuracy

of model training using HET-KG are both improved, further

demonstrating that using partial stale, HET-KG is able to

guarantee performance while thus improving the efficiency of

processing large-scale data. For a large-scale knowledge graph

dataset like Freebase-86m, HET-KG can guarantee the accu-

racy of the model training while reducing the time overhead of

communication and further improving the efficiency of model

training by setting the top-k value larger to cache more hot-

embedding with higher frequency ranking at one time, i.e.,

DPS strategy.

TABLE V
LINK PREDICTION RESULTS ON FREEBASE-86M.

System Model MRR Hits@1 Hits@10 Time (min)

PBG TransE 0.669 0.602 0.805 1152.7

DGL-KE TransE 0.671 0.599 0.809 332.9

HET-KG-C TransE 0.678 0.608 0.813 312.7

HET-KG-D TransE 0.677 0.605 0.813 305.2

C. Evaluation of training efficiency

In this section, we verify the effectiveness of the proposed

methods (HET-KG-C and HET-KG-D) with the goal of an-

swering the following questions. 1) How does the convergence

of HET-KG as compared with the state-of-the-art baselines?

2) How scalable is HET-KG compared with existing baseline

methods? 3) Is the proposed Hot-Embedding Oriented Train-

ing efficient in distributed knowledge graph embedding?

1) Training convergence: In this subsection, we report the

training convergence of baselines and the proposed methods

to answer the first question and present our findings. Fig. 5

1763

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 01:44:19 UTC from IEEE Xplore. Restrictions apply.

(a) FB15k (b) WN18 (c) Freebase-86m
Fig. 5. Training convergence comparison with PBG and DGL-KE.

(a) FB15k (b) WN18 (c) Freebase-86m
Fig. 6. Scalability comparison with PBG and DGL-KE.

(a) FB15k (b) WN18 (c) Freebase-86m
Fig. 7. Communication and computation cost comparison with PBG and DGL-KE.

depicts the convergence over time for model training and the

time required for each epoch, all systems can achieve similar

accuracy. The experimental results have exhibit that, compared

with the baseline methods, HET-KG requires less time to

achieve a comparable accuracy. On the Freebase-86m, HET-

KG-D outperforms other methods, which verifies the dynamic

partial stale algorithm can achieve better performance on large-

scale KGs.

2) Scalability: In this subsection, we will answer the second

question. The scalability study is conducted in terms of run-

time speedup on Freebase-86m with different number of work-

ers. As shown in Fig. 6, PBG has limited scalability, which

suffers from the unnecessary data transfer overhead caused

by treating relation embeddings as dense model weights. By

contrast, both HET-KG and DGL-KE have more significant

changes in the acceleration ratio with the increase of the

number of workers, and the average acceleration ratio of HET-

KG can be 30% higher than that of DGL-KE.

3) Communication and computation cost: In this subsection,

we further break down the per epoch time into computation

and communication parts to answer the third question. The

computation time, communication time, and total time of

the evaluated systems for model training with three datasets

are given separately, as shown in Fig. 7. It can be seen

that the overheads of DGL-KE and HET-KG are close in

terms of computation time, which proves that HET-KG does

not adversely affect the efficiency of the model computation

while improving the efficiency by prefetching and caching

entities and relations. The reduction of communication time

also proves that HET-KG can effectively reduce the number of

entity and relation embedding transmission during the training

process, and thus reduce the communication time. Futhermore,

the communication time of PBG far exceeds that of other

systems, mainly due to its use of relation embeddings as

dense model weights, which increases the amount of parameter

transfer.

D. Evaluation of HET-KG Solutions

In this subsection, we present the impact of cache size, bouded

staleness, and the selecion of hot-embeddings on the Freebase-

86m dataset.

1) Impact of cache size: As shown in Fig. 8(a), the cache

hit ratio first increases with the increase of cache size, which

indicates that caching hot-embeddings in descending order

of entities and relations frequency can effectively reduce the

amount of remote embedding communication.

In addition, the MRR values do not change significantly, as

the percentage of embedding that is delayed remains small

relative to the total training size and does not have a signifi-

cant impact on accuracy, which further demonstrates that the

cumulative error caused by the cache of hot-embeddings does

not significantly affect the model training accuracy.

2) Impact of bounded staleness: As shown in Fig. 8(b), we

evaluate how the performance and MRR vary as we change

1764

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 01:44:19 UTC from IEEE Xplore. Restrictions apply.

(a) Cache size (b) Staleness (c) hot-embedding selection

Fig. 8. Impact of settings on Freebase-86m

the staleness. Experimental results have exhibited that when

the staleness P ≤ 8, MRR is not significantly affected by in-

consistency between hot-embeddings and global embeddings.

However, the MRR decreases with further increase of staleness

P , which ensures that the inconsistency can be bounded within

a given threshold. Meanwhile, the cache hit ratio improves

while staleness increasing, which needs a trade-off between

training efficiency and model quality.

Fig. 9. Impact of synchronization threshold K

We have analyzed the impact of asynchronous training in Fig.

5 in Section VI.C. In order to further motivate the importance

of guaranteeing consistency, the epoch-MRR training curves

are shown in Fig. 9. When the consistency is guaranteed (e.g.,

staleness=1), the MRR of the model is 0.67. However, if we

relax the consistency guarantee (e.g., staleness=128), the MRR

decreases to 0.59, which verifies that the consistency guarantee

significantly affects the training convergence.

3) Impact of hot-embedding selection: We further analyze the

selection of hot-embeddings, as shown in Fig. 8(c). It shows

that the cache hit ratio increases and then decreases as the

entity ratio increases, with the highest hit ratio at 25% of

the entity ratio. This is mainly due to the fact that relation

embeddings are more dense compared to entity embeddings,

which coincides with our microbenchmark results in Fig.

2. Therefore, storing more relation embeddings in the hot-

embedding table yields better performance optimization.

TABLE VI
CACHE HIT RATIO COMPARISON WITH SIMPLE CACHING TECHNIQUES.

Dataset FIFO LRU Importance cache HET-KG

FB15k 7.4% 11.6% 15.2% 25.2%

WN18 16.5% 17.6% 32.1% 35.5%

Freebase-86m 6.6% 8.6% 34.5% 43.1%

4) Comparison with simple caching techniques: We show the

comparison of the cache hit ratio of HET-KG and several

simple caching techniques on three datasets in Table VI.

The experimental results demonstrate that the cache hit ratio

of HET-KG is much higher than that of simple caching

techniques, reflecting the effectiveness of the hot embedding

optimization in HET-KG.

5) Impact of node heterogeneity in knowledge graphs: A

unique challenge in knowledge graph embedding training

comes from the heterogeneity of nodes. As shown in Table VII,

we tested HET-KG and HET-KG-N after 30 epochs of training.

In HET-KG-N, we build the cache based on the frequency

of entities and relations. While in HET-KG, we additionally

consider the heterogeneity of nodes and fix the cache content

as 25% entity embeddings and 75% relation embeddings.

Compared with HET-KG, HET-KG-N achieves better perfor-

mance but lower accuracy. The experimental results illustrate

that although simple caching techniques can also achieve

optimization, neglecting the heterogeneity of nodes would

result in uneven update frequencies and affect the model

convergence performance.

TABLE VII
THE PERFORMANCE OF HET-KG WITH AND WITHOUT HETEROGENEITY

OPTIMIZATION.

Dataset System MRR Hits@1 Hits@10 Time(s)

FB15k HET-KG 0.343 0.249 0.518 236.8

FB15k HET-KG-N 0.304 0.214 0.472 227.2

WN18 HET-KG 0.629 0.444 0.907 86.0

WN18 HET-KG-N 0.606 0.426 0.870 77.1

VII. CONCLUSION

In this paper, we have extended the traditional PS-based

architecture by introducing a cache embedding table structure

to reduce the remote communication overheads, and proposed

HET-KG, a distributed system for training knowledge graph

embeddings. We employed a prefetching mechanism to adap-

tively select hot-embeddings and dynamically update the cache

embedding table. A hot-embedding synchronization algorithm

is designed to reduce the number of high-frequency parameter

transfers by retaining hot-embeddings, and to constrain the in-

consistency between hot-embeddings and global embeddings.

Experimental results have verified that HET-KG outperforms

the state-of-the-art systems in terms of both efficiency and

scalability.

ACKNOWLEDGEMENT

This work is supported by the National Key Research and

Development Program of China (No. 2019YFE0198600), the

National Natural Science Foundation of China (No. 61972275

and 61832001), PKU-Tencent joint research Lab, and Aus-

tralian Research Council Linkage Project (LP180100750).

1765

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 01:44:19 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.:
Translating embeddings for modeling multi-relational data. In: NeurIPS.
pp. 2787–2795 (2013)

[2] Cowie, J., Lehnert, W.: Information extraction. Commun. ACM 39(1),
80–91 (1996)

[3] Duchi, J.C., Hazan, E., Singer, Y.: Adaptive subgradient methods for
online learning and stochastic optimization. J. Mach. Learn. Res. 12,
2121–2159 (2011)

[4] Fader, A., Zettlemoyer, L., Etzioni, O.: Open question answering over
curated and extracted knowledge bases. In: ACM SIGKDD. pp. 1156–
1165 (2014)

[5] Fan, W., He, K., Li, Q., Wang, Y.: Graph algorithms: parallelization and
scalability. Sci. China Inf. Sci. 63(10), 1–21 (2020)

[6] Ghose, A.K., Herbertz, T., Salvino, J.M., Mallamo, J.P.: Knowledge-
based chemoinformatic approaches to drug discovery. Drug discovery
today 11(23-24), 1107–1114 (2006)

[7] Han, X., Cao, S., Lv, X., Lin, Y., Liu, Z., Sun, M., Li, J.: Openke: An
open toolkit for knowledge embedding. In: EMNLP. pp. 139–144 (2018)

[8] Ho, Q., Cipar, J., Cui, H., Lee, S., Kim, J.K., Gibbons, P.B., Gibson,
G.A., Ganger, G.R., Xing, E.P.: More effective distributed ml via a stale
synchronous parallel parallel server. In: NeurIPS. pp. 1223–1231 (2013)

[9] Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding
via dynamic mapping matrix. In: ACL-IJCNLP. pp. 687–696 (2015)

[10] Jiang, J., Xiao, P., Yu, L., Li, X., Cheng, J., Miao, X., Zhang, Z., Cui, B.:
Psgraph: How tencent trains extremely large-scale graphs with spark?
In: IEEE ICDE. pp. 1549–1557 (2020)

[11] Jiang, Y., Zhu, Y., Lan, C., Yi, B., Cui, Y., Guo, C.: A unified
architecture for accelerating distributed dnn training in heterogeneous
gpu/cpu clusters. In: USENIX OSDI. pp. 463–479 (2020)

[12] Karypis, G., Kumar, V.: Metis: A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices (1998)

[13] Lerer, A., Wu, L., Shen, J., Lacroix, T., Wehrstedt, L., Bose, A.,
Peysakhovich, A.: Pytorch-biggraph: A large scale graph embedding
system. In: MLSys (2019)

[14] Lian, X., Huang, Y., Li, Y., Liu, J.: Asynchronous parallel stochastic
gradient for nonconvex optimization. In: NeurIPS. pp. 2737–2745 (2015)

[15] Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation
embeddings for knowledge graph completion. In: AAAI. pp. 2181–2187
(2015)

[16] Miao, X., Gürel, N.M., Zhang, W., Han, Z., Li, B., Min, W., Rao, S.X.,
Ren, H., Shan, Y., Shao, Y., et al.: Degnn: Improving graph neural
networks with graph decomposition. In: ACM SIGKDD. pp. 1223–1233
(2021)

[17] Miao, X., Nie, X., Shao, Y., Yang, Z., Jiang, J., Ma, L., Cui, B.:
Heterogeneity-aware distributed machine learning training via partial
reduce. In: ACM SIGMOD. pp. 2262–2270 (2021)

[18] Miao, X., Zhang, H., Shi, Y., Nie, X., Yang, Z., Tao, Y., Cui, B.: HET:
scaling out huge embedding model training via cache-enabled distributed
framework. Proc. VLDB Endow. 15(2), 312–320 (2021)

[19] Mohoney, J., Waleffe, R., Xu, H., Rekatsinas, T., Venkataraman, S.:
Marius: Learning massive graph embeddings on a single machine. In:
USENIX OSDI. pp. 533–549 (2021)

[20] Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowl-
edge graphs. In: AAAI. pp. 1955–1961 (2016)

[21] Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective
learning on multi-relational data. In: ICML. pp. 809–816 (2011)

[22] Ramezani, M., Cong, W., Mahdavi, M., Sivasubramaniam, A., Kan-
demir, M.T.: GCN meets GPU: decoupling ”when to sample” from ”how
to sample”. In: NeurIPS (2020)

[23] Song, D., Zhang, F., Lu, M., Yang, S., Huang, H.: Dtranse: Distributed
translating embedding for knowledge graph. IEEE TPDS 32(10), 2509–
2523 (2021)

[24] Stokman, F.N., de Vries, P.H.: Structuring knowledge in a graph. In:
Human-computer interaction, pp. 186–206 (1988)

[25] Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: Knowledge graph em-
bedding by relational rotation in complex space. arXiv abs/1902.10197
(2019)

[26] Thorpe, J., Qiao, Y., Eyolfson, J., Teng, S., Hu, G., Jia, Z., Wei, J.,
Vora, K., Netravali, R., Kim, M., et al.: Dorylus: Affordable, scalable,
and accurate gnn training with distributed cpu servers and serverless
threads. In: USENIX OSDI. pp. 495–514 (2021)

[27] Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex
embeddings for simple link prediction. In: ICML. pp. 2071–2080 (2016)

[28] Wang, M., Yu, L., Zheng, D., Gan, Q., Gai, Y., Ye, Z., Li, M., Zhou,
J., Huang, Q., Ma, C., et al.: Deep graph library: Towards efficient and
scalable deep learning on graphs. CoRR abs/1909.01315 (2019)

[29] Wang, X., He, X., Cao, Y., Liu, M., Chua, T.S.: Kgat: Knowledge graph
attention network for recommendation. In: ACM SIGKDD. pp. 950–958
(2019)

[30] Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph and text
jointly embedding. In: EMNLP. pp. 1591–1601 (2014)

[31] Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and
relations for learning and inference in knowledge bases. In: ICLR (2015)

[32] Yang, H.: Aligraph: A comprehensive graph neural network platform.
In: ACM SIGKDD. pp. 3165–3166 (2019)

[33] Zhang, L., Li, D., Xi, Y., Jia, S.: Reinforcement learning with actor-critic
for knowledge graph reasoning. Sci. China Inf. Sci. 63(6) (2020)

[34] Zheng, D., Song, X., Ma, C., Tan, Z., Ye, Z., Dong, J., Xiong, H., Zhang,
Z., Karypis, G.: Dgl-ke: Training knowledge graph embeddings at scale.
In: ACM SIGIR. pp. 739–748 (2020)

[35] Zhou, K., Sun, S., Wang, H., Huang, P., He, X., Lan, R., Li, W., Liu,
W., Yang, T.: Demystifying cache policies for photo stores at scale: A
tencent case study. In: ICS. pp. 284–294 (2018)

[36] Zhu, Z., Xu, S., Tang, J., Qu, M.: Graphvite: A high-performance cpu-
gpu hybrid system for node embedding. In: WWW. pp. 2494–2504
(2019)

1766

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 01:44:19 UTC from IEEE Xplore. Restrictions apply.

