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Abstract—Since Deep Neural Networks (DNNs) are deeper
and larger, performing DNNs training on existing accelerators
(e.g., GPUs) is challenging due to their limited device memory
capacity. Existing memory management systems reduce the mem-
ory footprint via tensor offloading and recomputing. However,
this coarse-grained, one-tensor-at-a-time memory management
often incurs high peak GPU memory usage and cannot fully
utilize available hardware resources (e.g., PCIe). In this paper,
we propose TSPLIT, a fine-grained DNN memory management
system that breaks apart memory bottlenecks while maintain-
ing the efficiency of DNNs training. TSPLIT achieves this by
proposing a model-guided approach to holistically exploit the
tensor-split and its joint optimization with out-of-core execution
methods (via offload and recompute). We further provide an
efficient implementation of TSPLIT with proposed splittable
tensor abstraction, profiling-based planner, and optimized DNN
runtime. Evaluations on 6 DNN models show that compared to
vDNN and SuperNeurons, TSPLIT can achieve maximum model
scale up to 10.5× and 3.1× and throughput improved up to 4.7×
and 2.7× under the same memory over-subscription, respectively.

Index Terms—Deep Learning System, Memory Management,
Large Model Support.

I. INTRODUCTION

Enabled by the availability of enormous data, deep neural

networks (DNNs) have achieved great success in various

domains, such as computer vision, graph mining, and natural

language processing [1, 2, 3, 4, 5]. Recently, there is a trend

for deep learning community to use larger DNNs [6, 7, 8, 9,

10, 11] to analyze massive volumes of data and solve more

complex tasks, such as high resolution image segmentation

and large-scale machine translation [12]. Also, empirical evi-

dence shows that the size of state-of-the-art NLP models has

been increasing at a rate of 240× every 2 years [13]. The

exponential growth of model scale consists of expansions in

multiple dimensions, such as data sample dimension (e.g.,

batch size, sample length) and model parameter dimension

(e.g., hidden size in Transformer, channel size in CNNs). It

brings large amounts of memory requirements for the model

training, which is significantly challenging to these expensive

AI accelerators (e.g., GPU). For example, we increase both

the dimension of data samples and model parameters (e.g.,

hidden size) to enlarge the model scale of BERT-Large models

to show their memory requirement in Figure 1 and present four

mainstream GPUs to show the trainable model scale (below

the corresponding black line). The gap between the increasing
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Fig. 1. The memory requirement of BERT-Large (24-layer Transformer)
under different model scale (sample scale × parameter scale). Specifically,
the sample scale refers to batch size as well as the parameter scale refers to
hidden size in Transformer. On the right, we present the max trainable model
scale with mainstream NVIDIA GPUs, e.g., 4× 1280 for P100 .

TABLE I
THE FINAL PERFORMANCE ON MRPC DATASET OF BERT AT DIFFERENT

SAMPLE SCALE AND PARAMETER SCALE, WHERE WE FIX THE PARAMETER

SCALE AS 1024 AND THE SAMPLE SCALE AS 64, RESPECTIVELY [10].

Model Scale
Sample Parameter

4 8 16 32 768 1024

Accuracy 68.38% 70.10% 82.11% 83.82% 86.7% 86.9%

size of DNNs and considerably small device memory limits

the exploration of more advanced DNN architectures.

Typically, there is an optimal value or range of values for

sample size regarding each DNN model. Unfortunately, the

range of possible sample sizes is limited by GPU memory.

For example, the recommended batch size for BERT-large

is 32 [10] and the accuracy could be further improved with

larger batch size [14]. But the maximum supportable batch

size is only 9 on P100 and 24 on V100, respectively, far from

the optimal value. To demonstrate this, we finetune BERT on

the MRPC dataset at different model scale with TSPLIT. The

results in Table I present the necessity to support larger batch

sizes to get better final accuracy. Recent contrastive learning

methods have also shown that larger batches help learn better

representations [15, 16]. Therefore, TSPLIT and other GPU

memory management systems [17, 18, 19], attempt to break

the GPU memory boundaries which prevent from choosing

the optimal sample scale and parameter scale, making it more

attractive for users who cannot access more than a single GPU,

or users who want to minimize resource usage.
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Fig. 2. Illustrations of SuperNeurons on different DNNs with maximum
batch size (i.e., in Table IV) on TITAN RTX GPU. Figure 2(a) SuperNeurons
generates multiple high memory peaks, which bottleneck the trainability when
executing the VGG model. Figure 2(b) demonstrates that even combining
swap and recompute, SuperNeurons still incurs significant performance over-
head of 25% ∼ 45% across the 5 DNN models, with a low PCIe resource
utilization of 45.6% on average.

Distributed systems can mitigate above problems by involv-

ing multiple GPUs in training, while it brings high communi-

cation costs and increases the system complexity [20, 21, 22].

Meanwhile, the memory capacity on a single GPU still cannot

be efficiently utilized. The memory footprint of DNN training

is mainly occupied by parameters, feature maps, and their

gradients [19]. And various memory optimizations are pro-

posed to reduce the footprint. One approach is to adopt model

compression [23, 24, 25] techniques such as quantization or

sparsification [26] to compress tensors’ size during training.

However, this approach usually affects the final accuracy of

models and requires heavy hyper-parameter tuning.

Another approach is to evict feature map tensors in the

forward pass and regenerate them by recompute or swap in

the backward pass, which is more promising because of no

accuracy loss. Existing approaches manage to make strategic

decisions about swap and recompute for each tensor to reduce

the extra introduced time-costs. For example, TFLMS [27]

and vDNN [19] only utilize swap for feature map tensors ac-

cording to their execution order. SuperNeurons [17] determine

swap and recompute strategies based on the layer type, e.g.

activations of convolution layers are swapped out while batch

normalization layers are recomputed.

However, the tensor-wise GPU memory strategies (such as

swap and recompute) lead to two major inefficiencies: (1)

The trainability would be restricted by operations producing

the largest intermediate tensors, which generates high memory

peak and pressure. Figure 2(a) shows SuperNeurons generates

multiple high memory peaks, which bottleneck the trainability

when executing the VGG model. Similar patterns can also be

observed in other DNN models. (2) The coarse-grained, one-

at-a-time tensor swap/recompute limits the training efficiency.

A large tensor must be entirely swapped from the GPU before

releasing memory for executing operations blocked under

memory pressure, which hinders the scheduling ability of GPU

memory managers and incurs large performance overheads.

Figure 2(b) demonstrates that even combining swap and re-

compute, SuperNeurons still incurs a significant performance

overhead of 25%∼ 45% across the 5 DNN models, with a

low PCIe recourse utilization of 45.6% on average. The above

feature-map tensor

parameter tensor

operation

𝑪𝒐𝒏𝒗𝟏

𝑭𝟏

𝑾𝟏 𝑿

𝑪𝒐𝒏𝒗𝟐

𝑭𝟑

𝑾𝟐

𝑳

𝑩𝒏

𝑭𝟐

𝑹𝒆𝑳𝑼

𝑭𝟒

𝑨𝒅𝒅

𝑭𝟓

𝒅𝑪𝒐𝒏𝒗𝟏

𝑭𝟏
&

𝑾𝟏′ 𝑿′

𝒅𝑪𝒐𝒏𝒗𝟐

𝑭𝟑
&

𝑾𝟐

&

𝟏

𝒅𝑩𝒏

𝑭𝟐
&

𝒅𝑹𝒆𝑳𝑼

𝑭𝟒
&

𝒅𝑨𝒅𝒅

𝑭𝟓
&

𝑺𝑶

𝑺𝑰

𝑺𝑶 swap-out

𝑺𝑰 swap-in

Fig. 3. A computation graph, includes operations, dependency (edge) and
tensors. Conv1 and dConv1 represent the forward and backward computa-
tion operations. F1 is the outputs tensor of Conv1 and F1

′ is the gradient
tensor of F1. So and Si represent two optional operations under memory-
constrained DNN training, where So represents offloading tensors from GPU
to CPU and Si represents the tensor movement in the opposite direction.

limitation worsens with increasingly deeper and wider DNNs.

In this paper, we present TSPLIT, a deep learning system

that provides fine-grained tensor memory management. The

key novelty of TSPLIT lies in both the mechanism design

and system implementation. In terms of mechanism design,

TSPLIT breaks the operation boundary of a tensor with the

tensor-splitting primitive, which allows performing memory

operations (e.g., swap or evict) on the fine-granularity of

micro-tensors. The combination of splitting operations (what

and how to split) and out-of-core operations (what and when

to swap or generate) provides the chance of reducing peak

memory usage and improving the overlap between GPU com-

putation and memory transfer. To efficiently cope with a large

search space from micro-tensors, we propose a model-guided

search mechanism driven by the observation that most DNN’s

dataflow graph is available before execution and exhibits

predictable performance characteristics. In terms of system im-

plementation, we provide a splittable tensor abstraction called

sTensor, and a computation graph profiler and executor for

efficient DNN training. We conduct evaluations on 6 popular

DNN models. The results show that compared to vDNN and

SuperNeurons, TSPLIT can achieve maximum model scale up

to 10.5× and 3.1× and throughput up to 4.7× and 2.7× under

the same memory over-subscription.

To summarize, our main contributions are:

• We target GPU memory footprints in DNN training and

propose the tensor splitting approach to improve trainability

and efficiency with fine-grained memory optimization.

• We propose a model-guided planning algorithm to efficiently

search the optimal configuration information of each tensor.

• We build a prototype of deep learning memory optimiza-

tion system, TSPLIT, to implement the fine-grained tensor

operations.

• Evaluations on various DNN workloads show that TSPLIT

can significantly outperform state-of-the-art baselines on

both training ability and efficiency.
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Fig. 4. Figure 4(a) represents a possible computation schedule of Figure 3, where SO and SI are excluded. Figure 4(b) represents the memory requirement and
live tensor number during training with and without memory optimization. To reduce the peak memory, the memory-optimized execution involves re-generation
operations (i.e., swap-in/recompute) that delay the computation towards the tail, thus leading to more live tensors.

Algorithm 1: Construct Execution Schedule for DNNs

Data: G: Computation Graph
Result: O: Operation Schedule

1 Function Execution Scheduler(layer):
2 /*Topo Sort of DFS Manner*/ ;
3 O.push(layer) ;
4 for next layer in layer → outputs() do
5 next layer → ref cnt -= 1 ;
6 if next layer → ref cnt = 0 then
7 Execution Scheduler(next layer);

II. BACKGROUND

Deep Neural Network Training. Deep neural networks

consist of multiple mathematical functions as layers. Each

function takes the outputs of functions in the previous layer as

the inputs and produces an output as a function of the inputs.

Such functions naturally translate into a series of matrix or

tensor operations, such as matrix algebra, convolution, pool-

ing, etc. Thus, the computation of DNNs is typically expressed

as a dataflow graph (DFG) representation [28, 29, 30], where

the nodes are operations, and the edges are tensors. Figure 3

represents an identical computation dataflow graph, and the

memory footprint is mainly consumed by feature maps (i.e.,

F1), gradient maps (i.e., F1
′), and model parameters (i.e., W1).

Due to the dependency, the feature maps can’t be deleted until

their gradients are computed completely, which accounts for

the major memory usage. After users define DNN models,

deep learning systems first utilize a scheduler to construct an

execution order according to the computation graph and then

execute the operations one by one. The execution scheduler of

TSPLIT is shown a Algo 1, which takes the first layer as input

and recursively searches the subsequent layers in the Depth-

First-Search (DFS) manner. For example, Figure 4(a) shows

the execution schedule and its corresponding memory usage

of Figure 3, and the malloc or free of tensors only happen at

the beginning or end of each operation. DNNs are trained

on multiple feed-forward and backward-propagation passes

iteratively to minimize the prediction error of labeled datasets.

The feed-forward pass takes a batch of training input (e.g., a

set of images for an image classification task), and executes

TABLE II
THE DISTRIBUTION OF TENSORS’ SIZE IN BERT-LARGE

Size(MB) < 1 1 ∼ 10 10 ∼ 50 50 ∼ 100 100 ∼ 500 > 500

Percentage 5.03% 18.25% 8.94% 45.25% 9.12% 13.41%

the forward computation graph to get the model outputs Y
(e.g., prediction labels). The following loss function L is used

to measure the difference between Y and the ground truth

(e.g., true labels) as the error or loss of the network. The error

values are then propagated back in the back-propagation pass,

which executes the backward graph to obtain the gradients ∂L
∂w

of each model parameter w for updating.

GPU Memory Management. GPUs have become a de

facto standard for DNN training. However, recent advances in

deep learning emphasize the importance of using large DNN

models to improve the model quality and accelerate conver-

gence [12, 31, 32]. Such challenging trends have driven away

from computation bound and more towards memory bound.

Prior works [33, 34, 35] reduce memory footprint by evicting

tensors in the forward phase and adopt swap or recompute

strategies to regenerate in the backward phase. Thanks to the

large time gap between feature maps used in forward and back-

ward phases, swap feature map tensors between CPU and GPU

is beneficial, which considers CPU memory as a temporary

cache. However, synchronization between the computation and

data-transfer may sometimes cause inefficiencies. Recompute

reduces memory footprint by recomputing the corresponding

sub-graph to generate feature maps in the backward pass,

which would cause extra computation time. Figure 4(b) shows

the memory requirement curve and the live tensor number

curve with and without memory optimizations at different

time. After applying memory optimization techniques, several

tensors are temporarily released from GPU and then the

peak memory usage is reduced by ∆Mi while the overall

execution time is increased by ∆T . vDNN [19] first proposes

swap strategy and employs a layer-wise memory management.

Layup [34] and SuperNeurons [17] take the characteristic

of each operation into consideration and further combines

swap with recompute [36] . SwapAdvisor [33] first searches

the operation schedule and memory allocation policies and
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Fig. 5. The impact of split number on the operator performance, the caption
of each sub-graph is the size of input tensor, the x-axis represents the split
number and the y-axis represents the time of all split operations in total.

TABLE III
NOTATIONS

Symbols Definitions

G Computation Graph

Opi The ith operation

si The output sTensor of i-th operation

OOM Out of Memory

size(si) The size of tensor si
ci Memory management strategy configuration for tensor si
C Strategy configurations for all tensors

∆Mi[sj , c] Memory reduction of applying c on sj
∆Ti[sj , c] Extra time cost of applying c on sj

B the bandwidth between CPU and GPU

then makes swap decisions. KARMA [35] combines these

efforts with model parallelism to support distributed DL model

training. Overall, existing approaches [33, 37, 38] are concen-

trating on tensor-wise memory management, which limits the

swapping policy we can explore and leads to low hardware

utilization and efficiency.

III. MOTIVATION

A. Tensor Splitting

The minimum granularity of a memory operation in existing

GPU memory management is the entire tensor. We find

such coarse-grained, one-tensor-at-a-time memory operation

restricts the full performance potential due to the execution

primitive: For operators of large input and output tensors,

their input tensor cannot be evicted and output tensors cannot

be swapped out before the completion of operators, resulting

in resource under-utilization and undesirable memory usage

peaks. Although model designers often avoid having large

tensors in their models, these tensors are inevitable and ac-

count for a large proportion. We analyze the distribution of

tensors’ size in a popular model, BERT-Large, and present

the results in Table II. We can see that the model has many

large tensors, e.g., tensors of size > 500MB accounts for

13.41%, demonstrating the reason for the inefficiency of

existing methods operating at the full tensor granularity.

To mitigate these limitations, our basic idea is to introduce

tensor splitting to split a tensor into multiple independent

Sample
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Fig. 6. Illustrations of Tensor-Partition along the sample/ parameter dimen-
sion. For convolution, typical layer of CNNs, we can split the sample size (e.g.,
number of images) and length (e.g., height and width for images) for sample
splitting, and channel size for parameter splitting. For multi-head attention,
typical layer of Transformer, we can split the sample size(e.g., number of
sentences and length of sentences) for sample splitting, as well as hidden size
and numbers of heads for parameter splitting.

micro-tensors. Each is a fine-grained unit for a single mem-

ory operation (e.g., allocate/evict and swap/recompute). With

tensor-partitioning, we could allow early swapping of output

tensors at micro-tensor granularity, improving the PCIe utiliza-

tion and execution efficiency. Further, we can evict an input

micro-tensor to make room for executing the blocked micro-

tensor operator, reducing the peak memory usage. Partitioning

also brings an additional benefit of reducing the workspace of

operators (e.g., FFT-based convolution operator).

B. Challenges & Opportunities.

However, the benefits of partition come at the better utiliza-

tion of memory transfer bandwidth and reducing unnecessary

recomputation. Meanwhile, the partition imposes different

impacts on different operators in terms of execution time. As

demonstrated in Figure 5, we see that the operator execution

time changes along with the partition number, and different

operators exhibit different patterns. As shown by Figure 6,

we could exploit tensor split in the sample or parameter di-

mension, providing a more comprehensive memory optimiza-

tion space. Therefore, a key challenge of introducing graph-

partitioning for reducing memory consumption is to find an

efficient combination of partition strategy and memory man-

agement strategy (e.g., swap or recompute). We must address

(1) how to partition and manage the memory of input/output

tensors for a single operator, and (2) how to optimize the

partitioning and memory management of tensors for different

operators over the dataflow graph. Both problems are made

difficult and distinct from the partition in DNN parallelization

(over multi-GPUs) by the much larger joint search space of

tensor splitting and memory management. Fortunately, most

DNNs’ dataflow graph is usually known prior to execution,

and the operators often exhibit deterministic performance,

therefore, their execution times and memory usage can be

obtained through profiling. This allows us to search for the best

combination of partition and memory management strategies

prior to execution to maximize performance and trainability.

IV. TSPLIT MEMORY MANAGEMENT

TSPLIT proposes a fine-grained DNN memory management

system that breaks apart memory bottlenecks of training and

greatly improves the efficiency of large DNNs training. In this

section, we first formulate the problem of memory-constrained

2618

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 01:38:00 UTC from IEEE Xplore.  Restrictions apply. 



GPU Memory 

Capacity

Compute: 𝑂𝑝1 𝑂𝑝2𝑠1 𝑂𝑝3
Compute: 𝑂𝑝1 𝑂𝑝2 𝑂𝑝3
Swap-out: 𝑠1 𝐼𝑑𝑙𝑒
Compute: 𝑂𝑝1 𝑂𝑝2 𝑂𝑝3 𝑂𝑝1

𝑠2 𝑠3
OOM

𝑠1 𝑠2 𝑠3

…
…𝑠1

𝑠1
𝑠3

Malloc Free Config Cost

𝑠1 𝑠2
Config: swap

Config: recompute

Fig. 7. Illustrations of cost estimation on the non-split strategy and split
strategy. The memory bottleneck is appeared at Op3, the swap or recompute

option is used on s1 to reduce memory by size(t1) respectively.

deep learning training, then analyze the benefit and cost of

each memory optimization technique in detail and finally

propose the model-guided algorithm to design optimization

for each tensor.

A. System Objective

According to the dependencies of the computation graph,

TSPLIT builds the execution operation schedule as Algo 1, as

a manner of Depth-First-Search (DFS). Multi-branch neural

networks may have different topological order, and Figure 4(a)

represents a possible computation schedule of Figure 3, where

SO and SI are excluded. Meanwhile, we describe GPU mem-

ory requirement at each operation according to the schedule,

and tensors’ allocation and de-allocation only happen at the

beginning and end of operations. Tensors reside in GPU during

their lifetime, which is defined as the interval between its

allocation and de-allocation.

The overall execution time T of regular graphs can be

predicted by summing the execution time Ti of each operation

Opi: T =
∑N

i=1 Ti. The corresponding GPU memory require-

ment Mi when executing Opi can also be predicted by sum-

ming the total size of live tensors ti: Mi =
∑

ti is live size(ti)
For example, the initial memory requirement m0 in Figure

4(a) is total size of {X,W1,W2}, which only contains model

parameters and input data.

When executing the first operation Conv1, M0 turns

into M1, the total size of {X,W1,W2, s1}, and MN−2

= {X,W1,W2, s1, s3, s
′
1, s

′
3,W

′
2} when executing dConv2.

However, the peak memory requirement may exceed GPU

available memory (Out-Of-Memory, OOM), which incurs

memory bottleneck. In this case, TSPLIT employs memory

management strategies to break apart this bottleneck, including

recompute, swap and split, as we shall detail in Sec. IV-B.

Figure 4(b) shows the memory requirement curve and the

live tensor number curve with and without memory opti-

mizations at different time. By applying several strategies on

tensors, we could reduce memory requirement by ∆M(S)i
when executing Opi, at cost of increasing the overall execution

time by ∆T (S). As shown by Equation 1, the memory-

Compute: 𝑂𝑝31𝑠31 𝑠32 𝑠33𝑂𝑝32 𝑂𝑝33𝑠21 𝑠22 𝑠23
Peak Memory Usage𝑠3 > 𝑠2:𝑠2 < 𝑠3: 𝑠2 + Τ𝑠3 3

Τ𝑠2 3 + 𝑠3
Config: split𝑂𝑝1 𝑂𝑝2

Τ𝑠2 + Τ𝑠3 3 < 𝑠2 3 + 𝑠3𝑠2 + Τ𝑠3 3 > Τ𝑠2 3 + 𝑠3

…𝑠1 𝑠2

Fig. 8. Illustrations of cost estimation on the split strategy. The split option
is used on Op3 to make memory reduction by 2

3
∗min{size(s2), size(s3)},

where we release s2 in three steps and consider the situation according to the
size relationship between s2 and s3.

constrained deep learning training problem can be formulated

as an optimization problem, where our goal is to find appro-

priate planning C specifying the memory management strategy

configuration ci ∈ {swap, recompute, split } for tensor si to

reduce the max training memory requirement under available

GPU memory M while minimizing the incurred time cost on

the performance.

min
C

T +∆T (C)

s.t. Mi −∆M(C)i ≤M, ∀i ∈ {1, ..., N}
(1)

Once the strategy of tensors is decided as C, ∆M(C)i and

∆T (C) are the memory reduction when executing Opi and the

extra execution time cost of the whole graph. We formulate the

optimization problem by Equation 1, but finding the optimal

parallelization strategy is NP-hard, by an easy reduction from

the Minimum Makespan problem [39]. Our key insight is that

a DNN training job is a predictable workload that declares its

computation in terms of dataflow graph. So we could build a

cost model to estimate the execution time with given memory

management strategy configurations, and use a greedy search

algorithm preferring to move towards lower cost guided by

our analytic model.

B. Cost Models

By exploiting the predictability of DNNs’ iterative execu-

tion, we derive the analytic model for the memory reduction

∆Mi[sj , c] and extra time cost ∆Ti[sj , c] at the current oper-

ation Opi when applying the memory optimization strategy c
on tensor sj , where c ∈ {swap, recompute, split}. Assuming

that encountering a memory bottleneck when executing Opi,
we will formulate the ∆Mi[sj , c] and ∆Ti[sj , c] for each

candidate strategy on each possible sTensor as following.

Swap/Recompute. For the live tensors that are neither

inputs nor outputs of the current operation, e.g., s1 and s2 in

the Figure 7, split would not bring additional benefits in terms

of memory reduction beyond swap or recompute. For each of

them, we only need to determine the swap and recompute

options based on its costs from extra memory transfer or

computation. Equation 2 formulates the memory reduction

of ∆M when applying swap or recompute on sj . Figure 7

illustrates the cost introduced by non-split strategies. The

memory reduction ∆M3[s1, swap] and ∆M3[s1, recompute]
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are both size(s1), which is achieved by swapping or recom-

puting tensor s1 respectively.

∆Mi[sj , c] = size(sj)

c ∈ {swap, recompute} ∧ i < j
(2)

As for the swap strategy, the cost comes from the idle

time on the computation stream, since the inserted swap-out

operation might block the execution of the following operation

due to the limited GPU memory (e.g., there is no space for

Op3 to allocate its output tensor). The same situation may also

happen at the execution of the swap-in operation. Equation

3 formulates the forward and backward time cost of setting

swap for sj , which aims to measure whether swap operation

can be overlapped by computation and the gap between them.

B represents the hardware bandwidth (e.g., PCIe) between

CPU and GPU, and Ocu represents the percentage of PCIe

occupied during the execution of Opu. As described above,

i is the current memory bottleneck position and j is index

of the target tensor. q is the index of Opq which use si as

inputs in the backward phase and p is the index where the

swap-in operation begins to execute. Ocu is key to calculate

the potential overlap ratio and we keep an array to simulate

and store the status of each Op as for implementation.

∆Ti[sj , swap] = max

{

size(sj)

B
−

i−1∑

u=j+1

(1−Ocu) ∗ Tu, 0

}

︸ ︷︷ ︸

Forward cost

+max

{

size(sj)

B
−

q−1∑

u=p

(1−Ocu) ∗ Tu, 0

}

︸ ︷︷ ︸

Backward cost

s.t. Mi >M (i > j + 1)

Mk + size(sj) <M (∀k ∈ [p, q], q >= p)
(3)

Unlike the swap, the recompute strategy directly evicts

tensori but needs to execute corresponding sub-graph to

generate si before required again (e.g., the gray version of

Op1). Equation 4 formulates the time cost of setting recompute

for si, where I is the operations set for recomputing si.
Because sometimes the input tensor of operation i is also

set recompute, the input tensor’s operation is also needed

to inserted into I . For example, because s2 is already set

recompute option, I will be {Op1, Op2} if recompute s3.

∆Ti[sj , recompute] =
∑

u∈I

Tu (4)

Split. For the input tensors of the current operation, e.g., s2
of Op3 in Figure 7, by introducing the split option, we could

reduce current peak memory usage by performing fine-grained

micro tensor eviction. Note that the split enables fine-grained

memory manangement, and it can be combined with swap

and recompute. So for each split tensor, the option should

be set as (c, p num, dim), where c is the option between

{swap, recompute, reside}, p num is the split number and

dim is the target dimension. Taking Figure 8 as an example,

we split the input tensor s2 into 3 micro-tensors (p_num = 3),

and evict each micro-tensor by the swap and recompute option

once the the corresponding operation Opi3 has finished. The

memory saving ∆Mi is brought by the memory reuse between

input tensor sj and output tensor sj+1, shown as Equation 5.

∆Mi[sj , (c, p num, dim)] =

p num− 1

p num
∗min{size(sj), size(sj+1)}

c ∈ {swap, recompute} ∧ i = j + 1

(5)

The time cost incurred by the split operation could be

classified into three categories: (1) The costs of swap/recom-

pute on the micro-tensors, which are similar with the above

analysis. (2) The extra memory copy overheads incurred by

the split operation and merge operation. (3) The perfor-

mance degradation of the GPU kernels (e.g., the kernel launch

time, the GPU under-utilization of micro-tensor operations).

Equation 6 formulates the time cost of split memory option,

where ∆Tsi,split(p num, dim) represents the last two cost

categories above and is related with the split number.

∆Ti[sj , (c, p num, dim)] =

p num∑

u=1

∆Ti[s
u
j , c]

︸ ︷︷ ︸

swap/recompute cost

+∆Tsj ,split(p num, dim)
︸ ︷︷ ︸

split overheads

c ∈ {swap, recompute} ∧ i == j (6)

C. Model-guided Planning

After the cost model of each strategy on each tensor is

defined, TSPLIT adopts a model-guided planning algorithm to

search strategy combination for the trainability as well as high

training throughput. Meanwhile, thanks to the predictability

and iterative characteristic of deep learning training, TSPLIT

profiles the training process of the given model before actual

execution and uses these profiling data to calculate the cost of

each candidate strategy.

To shrink the significantly expanded searching space from

splitting, we divide the decision for split strategy and non-split

strategy, which aims at live tensors in GPU and current input

tensor. We make consistent memory options (e.g., swap/recom-

pute or not) for the micro-tensors inside a sTensor and rule out

the complex combinatorial decision among multiple sTensors.

The following key observation also verifies our design: Given

continuous tensor access, swapping out an earlier generated

tensor should be prioritized. This is because the swap operation

of such tensor can start the transfer from GPU to CPU earlier

but is possibly used in backward pass later, which maintains a

longer time memory reduction for GPU and a higher utilization

rate for CPU-GPU bandwidth.

As shown in Algorithm 2, given an operation execution

schedule O and a GPU with available memory M, TSPLIT

simulates the memory requirement Mi at each opi (line 3).

When encountering a memory bottleneck (line 5), TSPLIT

iteratively selects strategy for the tensor with the smallest ∆T
∆M
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Algorithm 2: Profiling Based Planning Algorithm

Data: Operation schedule: O, GPU available memory M
Result: Strategy combination: S = {si | i ∈ [1, N ]}

1 S = {}
2 for opi ∈ O do
3 Mi ← current memory requirement
4 // Suffer from memory bottleneck at opi
5 while Mi −∆M(S)i >M do
6 // Step 1: select best non-split strategy from previous

7 j, c← argmin
∆Ti[sj ,c]

∆Mi[sj ,c]
:= {sj , c|cj ∈ C,

8 cj is reside,
9 c ∈ {swap, recompute}} ;

10 // Step 2: select best split strategy from current

11 p num, c′, dim← argmin
∆Ti[sj ,(c

′,p num,dim)]

∆Mi[sj ,(c′,p num,dim)]
:=

12 {p num, dim, c′|
13 c′ ∈ {swap, recompute}} ;
14 // Step 3: select better strategy from non-split and split

15 if
∆Ti[sj ,c]

∆Mi[sj ,c]
≤

∆Ti[sj ,(c
′,p num,dim)]

∆Mi[sj ,(c′,p num,dim)]
then

16 C ← cj = {c, 1,−1};
17 else

18 C ← C ∪ ci = {c
′, p num, dim};

19 // No strategy for current input yet
20 if ci /∈ C then
21 C ← C ∪ ci = {reside, 1,−1};

to reduce the memory requirement in 3 steps (line 6-16). Step

1: As for the live tensors in GPU, we assign non-split strategies

{swap, recompute} on them to get their costs and propose the

tensor and strategy with the smallest ∆T
∆M

(line 6-8). Step 2: By

introducing the split strategy, we can reuse memory between

inputs and outputs. We iterate the strategy c′, split number

p num, and split dimension dim on them to get their costs

and propose the tensor and split strategy with the smallest
∆T
∆M

(line 9-11). Step 3: We select better strategy proposed

by non-split strategy in step 1 and split strategy in step 2 for

our decision and insert it into S (line 12-16). If there exists

no bottleneck here, we just set reside for the current input

tensor (line 17-19). The planning will terminate as soon as

all the bottlenecks are eliminated or fail because of no more

available tensors.

V. TSPLIT IMPLEMENTATION

TSPLIT is designed and implemented on a python-based DL

framework, where the computation operations are accelerated

by using NVIDIA cuBLAS and cuDNN [40]. Note that the

idea of fine-grained abstraction, i.e., sTensor, and the design

of TSPLIT are not limited to our DL platforms. In other words,

our techniques can also be adopted in other platforms, such

as TensorFlow. Our implementation consists of 14.5K LOC in

C/C++/CUDA with a Python front-end (20.7K LOC).

A. sTensor Abstraction

TSPLIT takes a computation graph as input and redefines

each tensor in the graph as a splittable tensor or sTensor,

which enables tensor-split primitive.

sTensor configuration. Each sTensor contains not only the

basic tensor information, but also the configuration informa-

tion to enable the tensor splitting primitive of sTensor. For a

1 struct sTensor {

2 //tensor information

3 size_t tensor_id;

4 Vector <Tensor*> inputs;

5

6 //config information

7 struct config{

8 // memory option (reside/swap/recompute)

9 size_t opt;

10 size_t p_num;

11 size_t dim;

12 }cfg;

13

14 void set_config(config cfg);

15 //split-n-merge

16 void split(size_t dim, size_t p_num);

17 void merge(size_t dim);

18 };

Fig. 9. The sTensor interfaces.

certain sTensor t, its configuration cfg contains the memory

option opt (i.e., reside, swap and recompute) and the splitting

settings (i.e., split number p_num and dimension dim).

sTensor interfaces. As shown in Figure 9, sTensor provides

a set of interfaces and helps to manage the size of the

joint search space of tensor split and memory management.

sTensors utilize the split primitive to break the operation

boundary of tensors, allowing single sTensor to be split as

p_num fine-grained micro-tensors executed by the opera-

tion and memory operations (e.g., such as allocate/free and

evict/regenerate). It can be split along the dim of sample,

model parameter, or attribute (e.g., batch, channel, height, and

width dimensions for images). The merge interface allows

transforming multiple micro-tensors to a entire tensor in one

of the two ways: either the concatenation along one dim or

element-wise reduction (e.g., sum). During the training, the

merge of micro-tensors can be required by the operation

(e.g., batch normalization) or the need of tensor re-split (e.g.,

different p_num for inputs and outputs).

sTensor graph generation Based on the sTensor configu-

ration, TSPLIT can easily transform a tensor-based dataflow

graph into the corresponding augmented sTensor-based graph,

which includes extra partition, memory optimization opera-

tions and additional control flow edges (e.g., timing).

Figure 10 gives an example to show the the aug-

mented graph generation process. The config of each

sTensor is shown in the left, and then TSPLIT utilizes

split(config.dim, config.p_num) to split the cor-

responding operations, e.g., the splitting of s1 also splits the

operation o2 into {o11, o
2
1, o

3
1, o

4
1}. Further, merge&split oper-

ations are inserted for tensor re-split (e.g., different p_num).

For example, an merge&split operation is inserted between

o2 and s2 because o2’s input (s1) and output (s2) have

different config.p_num. At last, memory-option operations

are inserted for sTensors according to their config.opt.

B. Profiling-based Estimation

As assumed by [20, 41, 42], the execution time of each

operation is predictable with low variance and is unrelated to

data. TSPLIT profiles every single operation before training,

which is helpful for models that can’t fit in GPU.
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Fig. 10. An example of augmented dataflow graph G for sTensor configuration S. The config of each sTensor is shown in the left, and then TSPLIT utilizes
split(config.dim, config.p_num) to split the corresponding operations, e.g., the splitting of s1 also splits the operation o2 into {o11, o

2
1, o

3
1, o

4
1}.

Further, merge&split operations are inserted for tensor re-split (e.g., different p_num). For example, an merge&split operation is inserted between o2 and
s2 because o2’s input (s1) and output (s2) have different config.p_num. At last, memory-option operations are inserted according to their config.opt.

TSPLIT utilizes cudaEvent to measure the execution

time of computation operation Tu and obtain transfer time of

swap as
size(ti)

bandwidth
by the full utilization of PCI-e bandwidth.

Meanwhile, the profiling procedure should monopolize the

hardware, e.g., GPU cores and PCIe bandwidth. Under the

current strategy combination S , TSPLIT predict the Ocu of

PCIe when executing opu through simulation. Specifically,

TSPLIT first assigns the ideal swap-out begin time and swap-

in begin time for each swap tensors as the generation time

and the previous computation operation begin time and then

simulate the PCI-e occupancy status.

By introducing split strategy, we enlarge the tensor search

space by inserting the current input tensor into the candidate

list. The cost model of split strategy can be divided into the

cost of swap or recompute and ∆Ti,split(p num, dim), which

is the cost of tensor split on hardware . ∆Ti,split(p num, dim)
is consist of the cost of split kernel and the cost of

split&merge operation. TSPLIT splits the original tensor into

p num micro-tensors along dimension dim and then sums

total computation execution time on these micro-tensors to

calculate the extra execution time as the cost of splitting

kernel. The cost of split&merge is ignored in TSPLIT, which

accounts for less than 1% of total execution time.

C. Data Layout Management

While swapping full tensors allow to maintain the same

data layout, splitting will have consequences on the layout

of tensors, contiguousness, etc, which in turn could affect

performance. TSPLIT avoids the negative effects in the fol-

lowing ways: First, during the planning phase, we will use

profiling data to calculate the cost of splitting in Equation 6,

and still resort to swapping/recomputing full tensors if the

cost outweighs the benefits (see line 15 in Algo 2). Second,

to enforce contiguousness, we use best-fit memory allocation

strategy in the implementation to store micro-tensors in con-

tiguous chunks of memory. Also, if we find the split and merge

actions are not necessary to be executed physically, we will

perform a in-place split or merge instead of extra memory copy

to alleviates the consequences on data layout. For example,

… ……

Forward Pass Backward Pass

…1

2

N

Op1

Op2

OpN-1

OpN Op’N

Op’N-1

Op’2

Op’1
Op1 Op2 OpN-1 OpN

…Op1 Op2 OpN-1

Op1 Op2

Op1

…

Fig. 11. The memory-centric recomputation strategy. Left: The continuous
recomputation sequence is {op1 → op2 → . . . → opN} and the input
tensor of op1 is stored as the checkpoint. Right: N rounds of recomputation
sequence to get the output of the corresponding opi respectively.

p num changes from 2 to 4 on batch dimension will share

the same tensor with different pointer address.

D. Deep Learning Runtime

Graph Executor. All GPU operations will be scheduled

into the GPU compute stream, and be launched and executed

asynchronously to avoid block the CPU threads. Swap opera-

tions are scheduled in another two streams, including the D2H

stream (GPU to CPU) and the H2D stream (CPU to GPU).

The synchronization between swap and their corresponding

computation operations are implemented by inserting CUDA

events. Based on these, TSPLIT could perform asynchronous

memory copy, i.e., cudaMemcpyAsync(), and guarantee

the specific execution order. TSPLIT provides fine-grained ten-

sor memory scheduling which also involves frequent allocation

and de-allocation. However, such intensive memory allocations

incur unnegligible overheads if using the native cudaMalloc

and cudaFree. To alleviate this issue, we pre-allocate a large

piece of GPU memory and implement a runtime memory pool

to manage the GPU usage for TSPLIT.

Recomputation Implementation. For multiple continuous

operations which require to be recomputed, there are two

optional strategies for the recomputation [17]. The speed-

centric strategy directly recomputes all N ancestor sTensors

in one-pass and stores all intermediate results, which involves
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TABLE IV
THE LARGEST SAMPLE SCALE (BATCH SIZE) THAT EACH POLICY CAN

REACH WITH A 24GB TITAN RTX

Models Base
vDNN vDNN Check Super

TSPLIT
conv all points Neurons

VGG-16 67 176 413 316 462 661
VGG-19 61 164 411 293 441 661

ResNet-50 76 201 783 192 591 1278
ResNet-101 51 138 783 124 361 1096

InceptionV4 36 131 864 220 882 1372

Transformer 62 x 452 117 x 730

O(N) computation costs and O(N) additional memory con-

sumption. To fully exploits the memory-saving opportunity,

we adopt the memory-centric strategy that recomputes forward

dependencies every time for each backward layers, which

involves O(N2) computation costs and O(1) additional mem-

ory consumption. For example, as illustrated in Figure 11,

the recompute sequence is {op1 → op2 → . . . → opN}
and the input tensor of op1 is stored as the checkpoint. In

the recomputation phase, {op1 → op2 → . . . → opN},

{op1 → op2 → . . . → opN−1}, . . . , {op1 → op2} and

{op1} will be executed, which totally involves N× (N+1)/2
extra operations. The detailed explanation can be found in Su-

perNeurons [17]. We further adopt an LRU-based recomputa-

tion optimization to combine the advantages of both strategies

with limited memory, i.e., execute as the speed-centric manner

and abandon the least recently used intermediate tensor once

the available memory is not enough.

VI. EVALUATION

In this section, we conduct detailed evaluations to demon-

strate the effectiveness of TSPLIT. We compare TSPLIT with

other state-of-the-art baselines on large DNN model training.

A. Experimental Setup

Machine Environment. Our experiments are conducted

on two different hardware environments. The first server is

equipped with NVIDIA Titan RTX GPU 24 GB, Intel(R)

Xeon(R) Gold 5120 CPU @ 2.20GHz, 256 GB RAM, PCIe

3.0, running Ubuntu 16.04. The second server is equipped with

NVIDIA GTX 1080ti GPU with 11 GB of RAM, Intel(R)

Xeon(R) E5-2650 v4 CPU @ 2.20GHz, 128 GB RAM and

PCIe 3.0. In both servers, the CUDA Toolkit version is 10.0,

and the cuDNN is 7.5.0. Compared to 1080ti, Titan RTX GPU

has larger GPU memory capacity and more computing units.

Baselines. We evaluate and compare TSPLIT with

other state-of-the-art memory-optimized polices, including

vDNN [19] (swap), Checkpoints [36] (recompute) and Su-

perNeurons [17] (swap & recompute). To show the effects of

memory optimizations, we create a baseline called Base that

represents common DL systems (e.g., TensorFlow, PyTorch)

which store all the feature maps and parameters during the

training process. vDNN [19] virtualizes the memory usage by

swapping fixed feature maps to the CPU, where vDNN-conv

only swaps inputs of convolution and vDNN-all swaps all ten-

sors. Checkpoints [36] optimizes the memory with the cost of

TABLE V
THE LARGEST PARAMETER SCALE THAT EACH POLICY CAN REACH WITH

A 24GB TITAN RTX. THE BATCH SIZE OF EACH MODEL IS FIXED AT 16
AND WE SCALE CHANNEL NUMBER IN CNNS AND HIDDEN SIZE IN

TRANSFORMER RESPECTIVELY.

Models Base
vDNN vDNN Check Super

TSPLIT
conv all points Neurons

VGG-16 4 10 25 19 28 40

VGG-19 3 10 25 18 27 40
ResNet-50 4 12 48 12 36 79

ResNet-101 3 8 48 7 22 68

InceptionV4 2 8 54 13 55 23
Transformer 3 x 18 5 x 30

extra forward computation. Superneurons [17] combines swap

and recompute to optimize memory, which swaps the outputs

of convolution to CPU memory and recomputes the outputs of

other cheap-to-recompute operations such as pooling. We also

implement TSplit on PyTorch and compare it with recently

proposed methods, including Zero-Offload [43] and FairScale

Offload [44]. Zero-Offload offloads the parameter gradients to

CPU at the backward phase, conduct the optimizer updates

computation in CPU and then swap the updated parameters

to GPU. The CPU in Zero-Offload is responsible for updating

the parameters and holding onto the optimizer state. Fairscale-

Offload also involves CPU with optimizer updating and shards

models almost equally based on the number of parameters,

which is moved between CPU and GPU at each iteration.

Moreover, it copies intermediate activations between CPU and

GPU in training. We have not included SwapAdvisor [33]

because it is not open-sourced and it mainly focuses on

scheduling optimization which is orthogonal to and compatible

with our work.

Benchmarks and Datasets. We evaluate TSPLIT on rep-

resentative models of different architectures such as CNN

and Transformer. The CNN models contain VGG, ResNet

and InceptionV4, which are the classic CNN architectures

and widely used for DL system benchmarks [45]. We also

evaluate Transformer [46] which is the basic module of the

current state-of-the-art large NLP models (e.g., BERT, GPT-

3). We take the ImageNet [1] dataset for CNN models and the

IWSLT2016 [32] dataset for Transformer

B. Results Analysis

This section answers the following research questions:

1) How much model scale can TSPLIT obtain comparing

with the other baselines?

2) How much throughput can TSPLIT maintain while per-

forming out-of-GPU training?

3) How much performance gain comes from TSPLIT’s ten-

sor split mechanism?

4) How does the hardware and workload affect the schedul-

ing decision of TSPLIT?

Model Scale We demonstrate the memory footprint of

different models by scaling models along sample dimensions

and parameter dimensions. As for Sample Scale, in order

to scale models, we fix the parameter size and increase the
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Fig. 12. Performance comparison on TITAN RTX GPU under different sample size, the x-axis represents the sample-size. Experiments are conduct on
four famous models, including CNNs and Tansformer. With the increased sample size, the execution of previous approaches begins to fail, i.e., the related
performance bars are missing in the figure. TSPLIT significantly outperforms these designs and supports much larger sample size with minor throughput loss.

sample size in a batch, e.g., number of images in CNNs and

number of language sequences in Transformer. Table IV shows

the largest sample scale by each approach on a TITAN RTX.

In summary, TSPLIT achieves the maximum sample scale

among all these six models. Compared with Base, TSPLIT

increases the maximum sample scale by 18.15× on average.

Due to the complexity of multi-branch model architecture,

TSPLIT could obtain up to 21.50× and 38.11× for ResNet-

101 and InceptionV4, respectively. Among the previous state-

of-the-art approaches, vDNN-all presents the best in ResNet-

50 and ResNet-101 while SuperNeurons presents the best in

other models. Compared to the best combination of previous

designs, TSPLIT still increases the max sample scale up to

1.52× on average. As for Parameter Scale, in order to scale

models, we fix the batch size at 16 and increase the parameter

dimensions, e.g., channels of convolution kernels in CNNs and

hidden size in Transformer. We expand the number of channel

in different kernels proportionally. Specifically, if the original

channel size is c1 and the parameter scale number is k, it

has c1 × k channels after scaling. TSPLIT also achieves the

maximum parameter scale among all these six models. Note

that vDNN-conv and SuperNeurons cannot help Transformer

since it doesn’t have convolution layers. Specifically, vDNN-

conv has no layers to offload and SuperNeurons has no layers

as checkpoints for recomputation. For both Sample Scale and

Parameter Scale, TSPLIT achieve the best results thanks to

split strategy.

Based on Table IV and Table V, we conduct the in-depth

analysis. The max sample scale on VGG-16 and VGG-19

under vDNN-all are almost equal, because the bottleneck of

VGG under vDNN-all is caused by the largest layer, i.e., the

second block, which exists in both VGG-16 and VGG-19. In

SuperNeurons, it performs swap-in operations and recompute

operations in the backward at the same time to improve

the throughput, while both of them require extra memory

allocation and causes the memory bottleneck. The key problem

here is the tensor-wise memory management, which causes

high memory usage during training and leads to low hardware

utilization.

Throughput. We also evaluate the efficiency of TSPLIT by

measuring the running throughput against other approaches.

Figure 12 presents the relationship between the sample size

(x-axis) and the speedup over vDNN (y-axis) among 4 pop-

ular models, including CNNs and Transformer. We highlight

that among all four workloads, TSPLIT achieve throughput

improved up to 4.7× and 2.7× under the same memory over-

subscription, respectively.

The speedup over vDNN is because vDNN-all swaps all

layers instead of on demand which seriously exacerbates the

overhead and leads the most serious performance loss. Mean-

while, vDNN-all swaps fixed layers without considering the

actual memory requirement, so the throughput (samples/sec-

ond) almost remains the same. Taking Figure 12 (VGG-16)

as an example, it shows that training VGG-16 with sample

size 128, the throughput of TSPLIT is 1.46× of vDNN-

conv, 2.80× of vDNN-all, 1.21× of Checkpoints and 1.11×
of SuperNeurons. Although vDNN-conv tries to overlap the

computation and communication by swapping the input of

convolution layers, the bottleneck of slow PCIe bandwidth

compared with high computational ability of GPU, and layer-

wise synchronization overhead leads to performance loss.

Checkpoints only involves recomputation without synchro-

nization overheads and always presents better computation

throughput than vDNN. But it also shows weaker scalability

of sample size, similar to vDNN-conv. By combining swap

and recompute, SuperNeurons outperform other previous base-

lines. However, SuperNeurons still performs worse than our

TSPLIT since the tensor granularity based design can not

fully utilize GPU resources. We clarify that TSplit offers the

following improvement over SuperNeurons: (1) SuperNeu-

rons only swaps data for convolution operations and cannot

support Transformer model as TSplit. (2) TSplit outperforms

significantly over SuperNeurons for large CNN models (e.g.,

Inception-V4). (3) Besides the throughput, we show that TSplit

could promote both the maximum batch size and parameter

size by up to 3×, as compared to SuperNeurons.

When sample size increases to 384, TSPLIT outperforms

vDNN-all and SuperNeurons by 2.18× and 1.15×, respec-

tively. vDNN-conv and Checkpoints fail to run because the

evicted tensors’ space is not enough to eliminate the mem-

2624

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 01:38:00 UTC from IEEE Xplore.  Restrictions apply. 



0

20

40

60

24 64 128 176 256

T
h

ro
u

g
h

p
u

t 
(s

a
m

p
le

/s
)

Batch Size

Base vDNN-conv vDNN-all

Checkpoints SuperNeurons Tsplit

(a) VGG-16

0
20
40
60
80

100
120
140

24 64 128 256 378

T
h

ro
u

g
h

p
u

t 
(s

a
m

p
le

/s
)

Batch Size

Base vDNN-conv vDNN-all

Checkpoints SuperNeurons Tsplit

(b) ResNet-50

Fig. 13. Performance comparison on 1080Ti GPU, whose FP32 FLOPS is
about 70% of TITAN RTX.

0

100

200

300

400

500

600

700

800

900

1000

VGG16 ResNet101

M
a

x 
S

a
m

p
le

 S
iz

e

(a) x=60

SuperNeurons TSplit w/o Split TSplit

0

100

200

300

400

500

600

700

800

900

1000

VGG16 ResNet101

(b) x=50

(a) x% of Base throughput

0%

20%

40%

60%

80%

100%

N
o

rm
a

liz
e

d
 M

e
m

o
ry

 S
iz

e

Batch Size

Swap Size Recompute Size

160 320

RTX 1080Ti RTX 1080Ti

(b) Different Devices

Fig. 14. Figure 14(a) Max sample size under x% of Base throughput.
TSPLIT can train larger model scale with the cost of throughput degradation.
Figure 14(b) The strategy combination of VGG-16 on RTX and 1080Ti.
Because of the profiling-based cost estimation, TSPLIT apply different strategy
for the same model under different hardware.

ory bottleneck. The throughput of SuperNeurons decreases

because more tensors should be evicted, where extra recompu-

tation and the idle time is introduced as communication vol-

ume increases. Due to the fine-grained memory management,

TSPLIT still achieves better throughput performance. TSPLIT

gets closer to vDNN performance with the increasing sample

size because it would make planning get closer to split and

swap full layers, which can be reached when even a single

layer might exceed the GPU memory due to the very large

sample/parameter size.

C. Breakdown Analysis

Effect of Tensor-Split To evaluate the impact of the tensor

split mechanism, we compare TSPLIT with TSPLIT w/o Split.

We set the expected throughput as 60% and 50% of the base-

line throughput and then compare the max trainable sample

size. Experiments are conducted on VGG-16 and ResNet-

101. In Figure 14(a), under 60% of the basic throughput, the

max trainable sample size of TSPLIT w/o Split and TSPLIT

outperforms SuperNeurons on ResNet-101 by 38% and 123%,

respectively. When decreasing x to 50, TSPLIT further outper-

forms SuperNeurons by 169%, shown as Figure 14(a). Similar

experimental results are shown on VGG-16. Compared with

SuperNeurons which makes decisions based on the static infor-

mation (e.g. layer type), TSPLIT w/o Split searches for better

swap/recompute policies based on cost models, which reduces

unnecessary memory eviction, improves the overlap between

computation and communication, and alleviates redundant

computation introduced by memory-centric recomputation.

Performance Comparison on 1080ti. We further evaluate

TSPLIT on 1080Ti (11 GB) which has less GPU memory than

RTX (24 GB). Meanwhile, the FP32 computation performance

of 1080Ti (11.34 TFLOPS) is around 70% of RTX (i.e., 16.3

TABLE VI
THE LARGEST SAMPLE SCALE (BATCH SIZE) THAT EACH POLICY CAN

REACH WITH A 24GB TITAN RTX

Models Base Zero-Offload FairScale TSPLIT(PyTorch)

VGG-16 48 176 383 485

ResNet-50 32 162 502 920
Transformer 34 130 440 540

TABLE VII
THE LARGEST PARAMETER SCALE THAT EACH POLICY CAN REACH WITH

A 24GB TITAN RTX. THE BATCH SIZE OF EACH MODEL IS FIXED AT 16
AND WE SCALE CHANNEL NUMBER IN CNNS AND HIDDEN SIZE IN

TRANSFORMER RESPECTIVELY.

Models Base Zero-Offload FairScale TSPLIT(PyTorch)

VGG-16 3 14 26 32

ResNet-50 2 12 23 55

Transformer 2 18 15 24

TFLOPS). We report the actual runtime speed (images/sec-

ond) as the metric and show the throughput comparsion in

Figure 13. TSPLIT still achieves the best among all previous

approaches. Compared to RTX, 1080ti has lower computation

ability, which increases the operation computation time and

therefore improves the overlap between computation and com-

munication. With the increased sample size, the performance

loss of vDNN in 1080ti is less than in RTX.

Configuration Comparison on GTX 1080ti. For the same

DNN model, the strategy combination selected by TSPLIT

could be different when the underlying platform changes.

Different hardware could lead to distinct decisions and should

be taken into consideration and TSPLIT utilizes the profiling

data for decisions. Figure 14(b) shows the total memory size of

swapped tensors and recomputes tensors decided by TSPLIT in

different GPUs. The results indicate that TSPLIT chooses more

tensors to swap, rather than recompute on GTX 1080ti due to

the larger recomputation overheads. This verifies that TSPLIT

can capture the differences in varied GPU characteristics.

D. Applicability for existing DNN Frameworks

Given a dataflow graph, TSplit performs a model-guided

search based on the graph, and outputs an augmented dataflow

graph which includes extra split/swap/regenerate operators and

additional control flow edges (as illustrated in Figure 10).

The additional edges ensure the final execution order adheres

to the timing of TSplit’s searched plan. Although TSPLIT

provides a lightweight runtime to execute the augmented

dataflow graph, TSPLIT will not result in changes in existing

operator implementation, making it compatible with exist-

ing DNN frameworks: we could convert TSplit augmented

dataflow graph into PyTorch or TensorFlow model that can

be executed in existing DNN frameworks. After adding the

extra split/swap/regenerate operators in existing frameworks,

the augmented dataflow graph of TSPLIT can be converted

into the executable model in PyTorch or TensorFlow [47].

We have implemented the TSplit to PyTorch conversion and

compare it with Zero-Offload [43] and FairScale-Offload [44]

on PyTorch. Table VI and Table VII show that TSPLIT

TSPLIT achieves maximum model scale up to 4.6× and 2.4×
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Fig. 15. Performance comparison with Fairscale and Zero-offload on PyTorch
in terms of throughput.

and throughput improved up to 1.9× and 1.2× (Figure 15),

under the same memory over-subscription, respectively. Zero-

Offload [43] only offloads the gradients of parameters and

optimizer state to CPU. For CNN-based models with small-

scale parameters but large-scale hidden states, we see that

Zero-offload achieves almost the least sample scale. FairScale

Offload [44] only utilizes the swapping techniques, where the

limited PCIe bandwidth would slow down the training.

VII. RELATED WORK

GPU Memory Management. Many memory manage-

ment optimizations have been proposed for GPU, inluding

paging [48], replacement caching [49], unified memory ad-

dress [50] and memory pool [51]. Mosaic [48] provides

application-transparent support for multiple page sizes to page

in and out. MultiQx-GPU [49] designs the cost-driven replace-

ment policy for data swapping. Pichai et al. [50]. Zhang et al.

[51] propose CNMeM to exploit the variable’s lifetime and size

information to optimize memory allocation position. However,

studies about paging, replacement caching and unified memory

address are not designed for DL training and don’t utilize the

special nature of tensor access patterns, while others about

memory pool don’t consider CPU memory.

Out-of-Core Training. Out-of-core training utilizes extra

memory (e.g., CPU) or extra computation (e.g., re-forward-

propagation) to free tensors out from GPU. vDNN [19] first

virtualizes the memory usage of DNNs against both GPU

and CPU and employs a layer-wise memory management

strategy. Layup [34] and SuperNeurons [17] further change

several cheap-to-compute operations from swapping to re-

computation [36] to improve the overall throughput. Swa-

pAdvisor [33] adopts a genetic algorithm to simultaneously

search for operator scheduling, memory allocation and swap

decisions. Capuchin [18] further explores the dynamic tensor

access patterns during the training. KARMA [35] formulates

the policy decision problem as a two-stage Integer Lin-

ear Programming problem and first combine it with model

parallelism to support distributed training. Zero-offload [43]

offloads both data and compute to CPU, and work together

with model parallelism. Note that, our approach is orthogonal

to the model parallelism studies [20] and TSPLIT can also

be adopted in multi-GPU to further increase the scalability.

Overall, existing approaches are concentrating on tensor-wise

memory management, which limits the swapping policy and

leads to low hardware utilization and efficiency.

Fine-Grained Scheduling. Lookup Tables [52] co-locates

the related individual tuples in fine granularity and designs a

large lookup table as database. Squall [53] utilizes the presence

of transactions, data and high throughput client workloads to

re-partition the databases. Split-CNN [54] proposes to split the

local receptive fields of CNN and reduce the GPU memory

requirements, which hurts the model quality. moDNN [37]

splits the batch of samples into several mini-batches and

uses the accumulated gradients to compute the final updates.

The split dimension keeps the batch dimension and the split

number keeps constant for all layers, which may incur the

serious efficiency problem of low computational cost layers.

The small sub-batch size reduces the memory usage for all

tensors in the computation graph by the same ratio but the

memory management is still trivial.

Micro-batches and Model Parallelism. Existing DNN

frameworks adopt to avoid gigantic tensors. For example, they

can adopt pipeline parallelism (i.e., micro-batches) to partition

gigantic tensors in the sample dimension (e.g., GPipe [55],

PipeDream [56]). In addition, they can adopt model paral-

lelism to partition the tensors in the parameter dimension (e.g.,

Megatron-LM [57], Mesh-TensorFlow [58] and GSPMD [59]).

However, pipeline/model parallelism and TSplit address the

memory challenges of DNNs in two orthogonal directions and

settings: Their focus, however, is on strategies for parallelizing

the actual execution across multiple GPUs, which jointly

optimize tensor partition and device placement. By contrast,

our focus is on the out-of-memory strategies (via offload and

recompute), which jointly optimizes tensor partition and swap/

recompute operations. Compared to DNN parallelization over

multi-GPUs, TSplit has different challenges and search space,

and is more attractive for users who cannot access more than

a single GPU, or users who want to minimize resource usage.

VIII. CONCLUSION

Existing DNNs memory system suffers from unnecessary

overheads due to the minimum granularity of management

today is the entire tensor. TSPLIT addresses this issue with

a holistic optimization solution that (1) provides a sTensor

abstraction that exposes the system fine-grained memory op-

erations capability, (2) leverages the predictability of DNN

computation to build the cost model for each strategy, and (3)

proposes a model-guided planning algorithm to explore the

enriched search space for joint optimization of tensor split and

swap/recompute strategies. Our evaluations show that TSPLIT

can achieve significant improvements compared to existing

tensor-based memory management baselines. This positions

TSPLIT as a new enhancement to the existing DNNs memory

management infrastructure.
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