IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 9, SEPTEMBER 2022

4119

CuWide: Towards Efficient Flow-Based Training
for Sparse Wide Models on GPUs

Xupeng Miao ", Lingxiao Ma, Zhi Yang™, Yingxia Shao*, Bin Cui

, Senior Member, IEEE,

Lele Yu, and Jiawei Jiang

Abstract—Wide models such as generalized linear models and factorization-based models have been extensively used in various
predictive applications, e.g., recommendation, CTR prediction, and image recognition. Due to the memory bounded property of the models,
the performance improvement on CPU is reaching the limitation. GPU is known to have many computation units and high memory
bandwidth, and becomes a promising platform for training machine learning models. However, the GPU training for the wide models is far
from optimal due to the sparsity and irregularity in wide models. The existing GPU-based wide models are even slower than the ones using
CPU. The classical training schema of the wide models does not optimized for the GPU architecture, which suffers from large amount of
random memory accesses and redundant read/write of intermediate values. In this paper, we propose an efficient GPU-training framework
for the large-scale wide models, named cuWide. To fully benefit from the memory hierarchy of GPU, cuWide applies a new flow-based
schema for training, which leverages the spatial and temporal locality of wide models to drastically reduce the amount of communication with
GPU global memory. To do so, we adopt a bigraph computation model to efficiently realize the flow-based schema and exploit three flexible
interfaces for programming. Further, we use the 2D partition of mini-batch (in sample and feature dimensions) with proposed graph
abstraction to optimize GPU memory access for sparse data, and apply several spatial-temporal caching mechanisms (importance-based
model caching and cross-stage accumulation caching mechanisms) to achieve a high performance kernel. To efficiently implement cuWide,
we also propose several GPU-oriented optimizations, including feature-oriented data layout to enhance the data locality, replication
mechanism to reduce update conflicts in shared memory, and multi-stream scheduling to overlap data transferring and kernel computing.
We show that cuWide can be up to more than 20 x faster than the state-of-the-art GPU solutions and multi-core CPU solutions.

Index Terms—Machine learning, wide model, linear model, GPU acceleration, parallel computation, shared memory architecture

1 INTRODUCTION

IDE model was first proposed in [1] and has been

widely used in many practical big data applications.
To describe such model more precisely, we describe its typi-
cal setup that the input data is a sparse matrix in R"*? and
the goal is to find a dense vector w € R? that minimizes
some (convex) loss function. Here, N is the number of sam-
ples and d is the feature dimension. For example, general-
ized linear model (GLM) class [2], [3], [4] including logistic
regression (LR), linear SVM (LSVM)), least square regression
(LSR) and follow the regularized leader (FTRL) [5] are typi-
cal wide models, which can be expressed as a linear

o Xupeng Miao, Lingxiao Ma, and Zhi Yang are with the Key Lab of High
Confidence Software Technologies (MOE), School of EECS, Peking Uni-
versity, Beijing 100871, China.

E-mail: {xupeng.miao, xysmlx, yangzhij@pku.edu.cn.

e Bin Cui is with the Key Lab of High Confidence Software Technologies
(MOE), School of EECS, Institute of Computational Social Science, Peking
University, Beijing 100871, China. E-mail: bin.cui@pku.edu.cn.

o Yingxia Shao is with the School of Computer Science, Beijing University of
Posts and Telecommunications, Beijing 100876, China.

E-mail: shaoyx@bupt.edu.cn, leleyu@tencent.com.

o Lele Yu is with Tencent Inc., Shenzhen 518054, China. E-mail: jiawei.
jiang@inf.ethz.ch.

o Jiawei Jiang is with ETH Zurich, 8092 Zurich, Switzerland.

Manuscript received 1 Apr. 2020; revised 2 Nov. 2020; accepted 3 Nov. 2020.
Date of publication 16 Nov. 2020, date of current version 5 Aug. 2022.
(Corresponding author: Zhi Yang.)

Recommended for acceptance by B. He.

Digital Object Identifier no. 10.1109/TKDE.2020.3038109

combination of sample features followed by an activation
function. Since wide models [1], [6], [7] can learn an objec-
tive from a wide set of features, they have been applied
among many industrial applications like recommender sys-
tems [1], click-through-rate prediction [8], [9], and image
recognition [10]. Given that increases in model update laten-
cies leads to losses in revenue or accuracy, these applica-
tions demand fast model training.

Due to such importance, a significant of computation
libraries or systems has been conducted to efficiently imple-
ment wide models for multi-core CPU. For example, DIMM-
Witted [11] is a state-of-the-art wide model implementation
on multi-core CPU systems. However, the performance of
existing wide models are still not satisfying. In general, the
wide models are memory bounded, and the model training
is limited by the memory bandwidth. Emerging hardware
(e.g., GPU, TP, ASIC) with more resources are becoming
more and more attractive for big data applications. In this
paper, we focus on GPU, which provides much higher mem-
ory bandwidth than today’s CPU architectures. Compared
to DRAM, a single GPU’s device memory provides 2 — 4x
more bandwidth for random access and 10 — 20x more
bandwidth for sequential access. In addition, GPU shared
memory provides 20 — 50x more bandwidth for sequential
access and 200 — 600x more bandwidth for random access.
However, efficient utilization of GPU is challenging because
of the (1) low computation-to-communication ratio, and (2)
irregular memory access patterns of wide models. As a
result, the parallel speedup of these applications is severely

1041-4347 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 03:00:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9371-8358
https://orcid.org/0000-0002-9371-8358
https://orcid.org/0000-0002-9371-8358
https://orcid.org/0000-0002-9371-8358
https://orcid.org/0000-0002-9371-8358
https://orcid.org/0000-0002-8219-4499
https://orcid.org/0000-0002-8219-4499
https://orcid.org/0000-0002-8219-4499
https://orcid.org/0000-0002-8219-4499
https://orcid.org/0000-0002-8219-4499
https://orcid.org/0000-0002-8559-2628
https://orcid.org/0000-0002-8559-2628
https://orcid.org/0000-0002-8559-2628
https://orcid.org/0000-0002-8559-2628
https://orcid.org/0000-0002-8559-2628
https://orcid.org/0000-0003-1681-4677
https://orcid.org/0000-0003-1681-4677
https://orcid.org/0000-0003-1681-4677
https://orcid.org/0000-0003-1681-4677
https://orcid.org/0000-0003-1681-4677
mailto:xupeng.miao@pku.edu.cn
mailto:xysmlx@pku.edu.cn
mailto:yangzhi@pku.edu.cn
mailto:bin.cui@pku.edu.cn
mailto:shaoyx@bupt.edu.cn
mailto:leleyu@tencent.com
mailto:jiawei.jiang@inf.ethz.ch
mailto:jiawei.jiang@inf.ethz.ch

4120

limited by the random nature of their memory access pat-
terns, a fundamental property of wide models.

Recent general GPU accelerated machine learning frame-
works (e.g., TensorFlow [12], PyTorch [13]) allow to imple-
ment wide models on GPU by expressing the computation
as operations on tensors. We observe that although such an
implementation exhibits several attractive features in pro-
gramming and flexibility, it has potential efficiency limita-
tion due to inefficient memory accesses, both quantitative as
well as qualitative. First, we note that the access frequency
distribution of feature (and thus parameter) is often approx-
imate to the power-law distribution [14], [15], such skewed
access pattern providing optimization opportunities of
leveraging GPU memory hierarchy. However, learning
frameworks completely loses such access pattern with the
primitive of tensor abstractions. We also observe that the
tensor operations have to write many intermediate data
(such as the partial sums, predictions, loss and partial gra-
dients) during the forward stage and read them back again
in the backward stage, which increases the number of reads
and writes on the global memory. To accelerate the model
training, the shared memory is a better option for tempo-
rally storing the intermediate data. However with the tensor
abstraction, the obstacle of doing so is that the capacity of
shared memory is small, while the size of gradients can be
very large since it is proportional to the number of features.
For example, NVIDIA Pascal GPU only has 96 KB per
streaming sultiprocessor (SM). But the number of features
can easily exceed millions, which incurs more than 1 MB
memory.

Our premise is that by changing the focus of computation
from a single tensor to a cacheable data partition (e.g.,
chunks), we can effectively exploit fine-grained data access
pattern of wide models to leverage GPU memory hierarchy,
through carefully partitioning and scheduling data (and
model) onto the GPU shard memory. Based on these
insights, we propose an efficient GPU training framework
for the wide models, named cuWide. CuWide applies mini-
batch SGD algorithm to train the models, and each mini-
batch is processed by the GPU. To fully exploit the advan-
tage of the memory hierarchy of GPU, we design a new
training schema, called flow-based schema, for the wide
models. In this schema, a mini-batch on GPU is further
divided into small chunks, and each chuck is computed by
the feature aggregation, which computes the sum of
weighted feature for each sample in the forward phase and
pushes the computation of gradients into the backward
phase. The feature aggregation guarantees the size of inter-
mediate data between the two phases is small enough to be
stored in shared memory. To harness the characteristics of
training data, cuWide mainly uses two optimization techni-
ques to achieve a high-performance training: 1) Importance
caching aims at decreasing the number of random global
memory access when updating model parameters; 2) Cross-
stage accumulation caching aims at removing a large
amount of global memory accesses of intermediate data
during forward-backward stages.

The main contributions are summarized as follows:

New Flow-Based Training Schema on Bigraph. To realize the
flow-based schema on the top of GPU, we introduce a bigraph
computation model, where a mini-batch is represented by a

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 9, SEPTEMBER 2022

bigraph. In the bigraph, samples are represented by sample
nodes, features are represented by feature nodes, and the
edges indicate the relationship between features and samples.
Furthermore, the flow-based schema on bigraph provides a
vertex-centric programming model Aggregate-Loss-Apply
(ALA) to express the execution of various wide models over a
bi-graph. From this graph view, cuWide could derive a cache-
efficient partition and scheduling scheme that removes the
large amount of random memory access from the global mem-
ory to the on-chip memory, resulting in optimized memory
performance. Specifically, cuWide generates chunks using the
2D partition of mini-batch in sample and parameter dimen-
sions. The size of chunk is selected in such a way that it can be
accommodated in GPU shared memory. Each processing unit
(e.g., SMs inside a GPU) streams the chunk of given samples
on shared memory.

Fine-Grained Spatial-Temporal Caching Mechanisms. To
achieve efficient GPU training of cuiWWide, we carefully inves-
tigate the temporal locality of memory access in wide mod-
els, and propose two optimization techniques. 1) According
to the empirical study, the sparse training data has a skew
feature distribution, thus incurring nonuniform global mem-
ory access when updating model parameters. The important
features with high frequency have more chance to be concur-
rently updated, which makes parallel computation degener-
ate into serial computation. By making the trade-off between
global memory and shared memory, we design importance
cache to improve the efficiency of model update. The impor-
tance cache selects a subset of important features on basis of
a cost model. 2) Through refactoring the training into
Aggregate, Loss and Apply stages, we observe that gra-
dients and predictions of wide models can be formulated as
functions on certain intermediate scalars, denoted by
Accums, which can be aggregated from input features and
model parameters. Such temporal locality of Accum data
across stages implies that we can reduce the global memory
access for writting/reading intermediate data by caching
aggregated feature in shared memory. In the light of this, we
present a cross-stage accumulation caching mechanism that
could perform the computation across stages in the shared
memory and thus removing a large amount of global mem-
ory accesses of intermediated data .

Efficient System Implementation. We carefully implement
the prototype of cuWide based on aforementioned tech-
nique contributions. To efficiently implement the system,
we also propose several GPU-oriented optimizations, inc-
luding feature-oriented data layout to enhance the data
locality, and multi-stream scheduling to overlap data trans-
ferring and kernel computing. We conducted comprehen-
sive experiments on four real-world data sets. The
experimental results demonstrate that cuWide can be at
least 22 x faster than the state-of-the-art GPU solution Ten-
sorflow, 18-50x faster than the state-of-the-art multi-core
CPU solution DIMMWitted.

2 PRELIMINARIES

In this section, we first briefly introduce two wide models,
i.e,, GLM and FM. Then we review the training algorithm,
mini-batch SGD. Finally, we describe the characteristics of
GPU architecture.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 03:00:11 UTC from IEEE Xplore. Restrictions apply.

MIAO ETAL.: CUWIDE: TOWARDS EFFICIENT FLOW-BASED TRAINING FOR SPARSE WIDE MODELS ON GPUS

TABLE 1
Wide Model Examples: LR, LSVM and LSR
Model Loss Function Gradient
LR log(1 + e~ vw™) 1;%
LSVM maz(0,1 — ywz) yz,if 1 —ywz > 0
LSR (y — wz)’ 2(wz — y)x
2.1 Wide Model

Wide model has been successfully applied in many recom-
mender systems (e.g., Google [1]). For large-scale online rec-
ommendation and ranking systems in an industrial setting,
GLMs (e.g., LR, LSVM, LSR and FTRL [5]) are widely used
because they are simple, scalable and interpretable. The
concept of wide model is a substitute for linear model consist-
ing of the multiplication operation of a sparse tensor and a
dense vector. Formally defined as: §(z) = wz, where w €
R™ is the model parameters, z is the m-dimensional feature
vector and ¢ is the prediction. The loss function of a given
wide model can be formulated as: L(w) = >/ l(y;, wx;).
The goal of wide model is to minimize the loss function and
find w = argmin,, L(w). Table 1 lists the loss functions of
some classical wide model examples.

Based on the computation pattern definition, we further
generalize the wide model with factorized models (FM) [16].
FM generalizes to previously unseen feature interactions by
learning a low-dimensional latent embedding vector for
each feature, with less burden of feature engineering. The
equation for a FM can be defined as

m m

i(z) = wr + Z Z (U, V) Tp Ty, (1)

p=1 g=p+l1

where m is the feature dimension, w € R™ are the feature
weights, and v,, v, € R* are hidden vectors describing
the variables z, and x, with k factors. After the reformula-
tion in [16], it can also be formulated as the weighted sum-
mation when the latent dimension k is low (see details in
Section 3.2). In consequence, we choose GLMs and FM
(with a low latent dimension k) as two representative
instances of wide models.

2.2 Mini-Batch Stochastic Gradient Descent
Mini-batch stochastic gradient descent (SGD) is a popular
optimization method in machine learning. It makes a bal-
ance between convergence speed and accuracy degradation
compared to the standard SGD and can be implemented on
parallel architectures easily. Algorithm 1 illustrates the clas-
sical procedure of mini-batch SGD. Each iteration of the
mini-batch SGD (Lines 5-11) consists of the forward stage
(Lines 6-8) and the backward stage (Lines 9-11). In the for-
ward stage, the algorithm computes loss and gradient; Then
it updates the model with the gradient in the backward
stage.

2.3 GPU Architecture

GPU, with SIMT architecture, is often used to accelerate
data-intensive machine learning algorithms, especially for
deep learning [17], [18]. However, in some cases, GPU

4121

programs can be slower than highly-optimized multi-core
CPU solutions. Thus, GPU optimization designed for spe-
cific models is significant for system performance. We use
NVIDIA GPU and its CUDA programming interface [19] in
this paper. A GPU function in CUDA programs is called a
kernel. Each GPU contains several streaming processors
(SMs) and each SM contains individual CUDA cores, warp
schedulers and registers.

Algorithm 1. Mini-Batch SGD Algorithm

Input: Data Set: S, Batch Size: n, Epochs: £

1: Initialize model parameters w®;

2: Shuffle the data set;

3: fori = 0 to F epochs do

4: fort=0to ‘,—I iterations do

5: D « Mini-batch with n elements from S;
6: / /Forward stage;
7.
8

f « Lp(w®) //Compute loss;
: g — ALp(w®) // Compute gradient;
9: / /Backward stage;
10: Aw — —ng //Update rule;

11: wt) — w® + Aw / /Model update;
12: end for
13: end for

GPU supports hundreds of thousands of threads, sharing
the same instruction stream. These threads are organized
into thread blocks and at the hardware level each thread
block only exists in one SM. Every consecutive 32 threads in
a block are organized into thread warps that execute the
same instruction at a time. Global memory is the largest
memory in a GPU (e.g., 11 GB for GTX 1080ti) and address-
able for all threads. Compared with global memory, shared
memory has much shorter latency and higher throughput.
As the special programmable on-chip memory, the shared
memory is only addressable for threads in a thread
block [20]. In addition, the shared memory is quite small,
only up to 96 KB per SM for NVIDIA Pascal GPU.

3 MOTIVATION OF FLOW-BASED TRAINING
STRATEGY

In this section, we introduce the flow-based training strat-
egy, which can benefit from the memory hierarchy of GPU.
First, we describe the classic training strategy of wide mod-
els on GPU, called the stage-based strategy. Then we intro-
duce the data access locality for wide models, followed by
the elaboration of the flow-based strategy.

3.1 Stage-Based Strategy

Existing popular ML systems, e.g., TensorFlow, PyTorch
and MXNet, adopt stage-based strategy during wide model
training on GPU, as illustrated in Fig. 1a. The strategy calcu-
lates prediction errors in the forward stage and uses gra-
dients to update the model in the backward stage. Such
stage-based model has the following two problems, leading
to low memory performance.

Model Access. Although sparse matrix layouts like Com-
pressed Sparse Row (CSR) store all non-zero elements of a
row sequentially in memory allowing fast row major tra-
versal of data matrix, the nonzero columns in adjacency

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 03:00:11 UTC from IEEE Xplore. Restrictions apply.

4122

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 9, SEPTEMBER 2022

| Global Memory [Global Memory Shared Memory
Intermediate Data Accum
I
s = - - s
Input Data &e‘é 9%" Model Input Data @3‘6) I, GC,{,LI/ Model
Qy \"a —— — ?% Model Cache \’o’ —
I . | - i I— 2,)
TN H B m e H))) Yo I - -
T T I S)) SO T LT T

(a) Stage-based strategy

Fig. 1. The two strategies for training.

matrix can be scattered anywhere in the matrix and reading
their values can result in highly random accesses to the
model vector. Similarly, the backward direction process suf-
fers from the similar random write accesses to the model
vector.

Intermediate Data Generation. The system has to write inter-
mediate data (such as the partial sums, predictions, loss and
partial gradients) during the forward stage and read them
back again in the backward stage, which increases the num-
ber of reads and writes on the global memory.

As introduced in Section 2.3, shared memory in GPU has
much lower latency and higher memory bandwidth than
global memory. As wide models are bound by memory
access speed, it is highly required but remain challenging to
leverage GPU memory hierarchy, given high-dimensional
model parameter/itermediate data and limited shared mem-
ory. For example, LR on the criteo data set with 1 million fea-
tures needs 3.8 MB to store the feature weights, but the
shared memory only has a limited size (up to 96 KB). There-
fore, the stage-based strategy can hardly benefit from the
advantages of shared memory.

3.2 Spatial-Temporal Locality of Wide Models
By carefully examining the memory access characteristics of
the wide models, we find that these models exhibit spatial-
temporal locality in memory access patterns, providing opti-
mization opportunities of leveraging GPU memory hierarchy.
Spatial Locality. For the wide model, the feature frequency
indicates the importance of each feature, which is propor-
tional to the memory access frequency of this feature during
the training. More concretely, in many large-scale machine
learning problems, it is very common that different features
are not uniformly updated during the training [14], [21],
[22]. Most features only show up in few samples, and the
top features are nonzero for almost all samples. During
backward stage. Fig. 2 shows the feature distributions of
three real data sets. The results imply the feature almost fol-
lows a power law distribution, where the feature frequency
is computed as

criteo kddb : url

2 @
)
logifeature frequency)
- 7 8
//
loglfeature frequency)
L_J

log(feature frequency)

0)
5 10 15 0

log(feature id)

0 5 10 15 20 15

loglfeature id)

=]

5 10
logifeature id)

Fig. 2. Feature distributions over three real datasets.

(b) Flow-based strategy

i #samples with nonzero feature i @
e #all samples '

This feature skewness implies the spatial locality in access-
ing model parameters and opportunities for gains by cach-
ing importance features in GPU shared memory.

Temporal Locality. Through analysis, we observe that gra-
dients and predictions of wide models can be formulated as
functions on certain intermediate scalars, denoted by
Accums, which can be aggregated from input features and
model parameters. We first take the LR model as an example

1
=10 = evaly(wz) @
o = e o7 = radin(we, z.,y). @

where w are the model parameters, z, y are the inputs and
wz are the Accums. For the FM model, the feature aggrega-
tion is

. 1 2 N".2 2 0o
y:wz+§;<(wz) *Z”iﬂj = eval wz,wz,j:l v |

J=1
(%)

m
o 2) 2.2
Gv;; = TVT — VT; = gradm, <w$7vzw, E vjjwj> , (6)
=1

where w and v are model parameters, z, y are inputs and
wz, viz, Y.;", vz are Accum data. Such temporal locality
of Accum data during the forward-backward stages implies
that we can reduce the global memory access for writting/
reading intermediate data by caching aggregated feature in

shared memory.

3.3 Flow-Based Strategy

Based on the observation of data locality pattern, we design a
new training strategy, called flow-based strategy, as illustrated
in Fig. 1a. In this strategy, we perform a two-dimensional (2D)
partition over the mini-batch, into chunks over the sample
dimension and segments over the feature (i.e., model) dimen-
sion, respectively. The size of partition is selected in such a
way that the range of samples or features contained in it can be
accommodated in cache. Then each chunk is processed one-
by-one and the Accum, rather than gradient, is temporally
stored in the shared memory. In the backward phase, the
update operation uses these Accums to calculate gradients,

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 03:00:11 UTC from IEEE Xplore. Restrictions apply.

MIAO ETAL.: CUWIDE: TOWARDS EFFICIENT FLOW-BASED TRAINING FOR SPARSE WIDE MODELS ON GPUS

Sample vertices

X0 X 2.Loss(A;, model, x,y)

\ 1.Aggregate(A;, model, x)

3. Apply(A., model, x, y)

fo h f3

Parameter vertices

Fig. 3. The ALA processing model.

thus enjoying good temporal locality with accesses to the par-
tial sums being served by cache. At the same time, the forward
and backward phase read and update important parameters
from a model segment cached on shared memory, it enjoys
good spatial locality as well. The flow-based strategy processes
chunks in a streaming manner, and synchronize the updates to
the model when all chunks in a mini-batch have been proc-
essed. In this way, the scheme exploits spatial-temporal local-
ity and GPU memory hierarchy to optimize memory accesses
of wide model.

4 cuWIDE DESIGN

Based on the flow-based strategy, we propose cuWide which
factors the execution of wide model training into three
phases: aggregate the feature, compute the loss and apply
the gradient. We formulate the sparse data of wide models
by a bigraph representation and design an Aggregate, Loss
and Apply processing model on top of the graph. We then
design a bigraph-based execution engine with effective cach-
ing scheme to optimize the GPU memory access.

4.1 Programming Abstraction

Leveraging the locality access pattern in wide model is non-
trivial on GPU with SIMT architecture, which requires care-
fully partitioning and scheduling data (and model) onto
the memory hierarchy in GPU. The general GPU machine
learning frameworks completely loses such access pattern
with the primitive of tensor abstractions. cuWide adopts a
new graph-based programming model, which constructs the
sample-feature (parameter) interaction during the training
as a bi-graph. To do so, cuWide provides a vertex-centric
programming model Aggregate-Loss-Apply, allowing
to express the execution of various wide models over a bi-
graph. With such programming model, cuWide could
enable the flow-based training strategy through exploiting
the fine-grained irregularity within the sparse input data
matrix, e.g., performing 2D partitioning over the sample
and feature dimensions.

We formulate wide models by a bigraph model, where
sample vertices represent samples, parameter vertices rep-
resent different features and edges represent the relations
between samples and features. For each iteration of mini-
batch SGD, the number of sample vertices is the batch size,
the number of parameter vertices is the feature dimension
of data set and the edges between them represent the sparse
input. For example, as shown in Fig. 3, the sample vertex z
has two adjacent parameter vertices (fo, f1), which means

4123

Aggregate(A.,x,w):

A, +— wx
Loss(A¢,y):

return log(1 + e~¥4¢)
Apply(Ac,w,x,y):

w — w4+ af—yx) /(e + 1)

Fig. 4. LR implementation with ALA interfaces.

that zy has two nonzero features (fy, f1) in the dataset. Each
parameter vertex stores the model parameters correspond-
ing to the feature, and sample vertices store the Accum cor-
responding to the samples. We construct the bigraph for
wide models during the data loading.

The standard graph model assumes a homogeneous set
of vertices, cannot express bi-graphs that have different
types of vertices playing distinct roles (e.g., feature vertices
and parameter vertices). So for our bi-graph construction,
we present a processing model with three interfaces to
describe the computation procedure over the bigraph:
Aggregate, Loss and Apply, ALA for short, as shown in
Fig. 3. CuWide allows a user to customize the computation
in the flow-based strategy on bigraph by the ALA interfaces.

Aggregate: In this stage, sample vertices aggregate
adjacent parameter vertices and compute the intermediate
Accum. Each sample vertex only accesses its own Accum
during computation.

Loss: The Loss interface defines the model and also
tracks the training progress. The inputs of the Loss interface
are target values and Accum, and the output is the current
loss of the model.

Apply: In this interface, parameter vertices fetch the
Accum from adjacent sample vertices, finish the gradient
computation and update the model.

Figs. 4 and 5 shows the LR and FM implementation using
ALA programming model. For the FM model in cuWide, we
not only calculate wx (i.e.,, the dot product between the
dense model parameters w and the sparse feature vector x),
but also 2k additional Accums including vix and)" | vix?,
where i € [1, k]. The computation of these extra Accums are
similar to that of wx in cuWide. We assume the hidden
dimension of FM £ is far more less than the feature dimen-
sion. Therefore, the main computation operation of FM is
still a “multiplication” of a sparse matrix (a mini-batch of x)
and dense vectors (v;). If & becomes larger, it turns into a
multiplication of a sparse matrix and a dense matrix and
requires further optimization. Based on the interface, the
user can benefit from our system advantages by easily cus-
tomizing the loss function to implement other wide models
in C++ or Python.

Note that the bi-graph construction and partition is only
executed once before the training, which is implemented by

Aggregate(A.,x,w,v):

Acr — wex, Acoi <+ vix, Acsi 27:1 CHE
Loss(Ac,y):

return Ac + % Zle((Ac%)Q — Aesi) —y
Apply(AC/wlvlm/y):

w 4~ w + ax, Vi < vij + Oé(wz‘Adj - 'Uijwz?)

Fig. 5. FM implementation with ALA interfaces.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 03:00:11 UTC from IEEE Xplore. Restrictions apply.

4124

Model: = stgmold(zl 1‘“ x;)

Parameter vertices fo

Forward

Sample vertices

One Hop
Subgraph,

Fig. 6. Bigraph representation by vertex-cut subgraph of LR.

building the chunk index on the input datasets. Its cost is
mainly dominated by the time for performing a single pass
over the data, which is significantly smaller than that
required by training with repeated passing over the data
(i.e., epochs). For example, we measured this pre-processing
cost for training LR on criteo-s, which is only hundreds of
milliseconds and is ignorable compared to training time.

4.2 Bigraph-Based Execution Engine

We present the bigraph-based execution engine as the sys-
tem realization of the flow-based strategy. The duty of this
engine is to execute the customized calculations defined by
ALA on the bigraph abstraction.

To execute flow-based strategy, the sample nodes are
partitioned into chunks so that their Accum can be cached
in shared memory, as shown in Fig. 1a. In the view of graph,
we create a subgraph by extracting the one-hop neighbor-
hood of the sample vertices in the chunk. Fig. 6 shows a ver-
tex-cut example of bigraph representation of LR. Chunk;
contains (zp, z1), and the neighborhood of the sample verti-
ces (xo, 1) are (fo, f1, f2, f3). And Chunk, contains (za,3),
the corresponding subgraph contains sample vertices
(fs, f1), where f3 is mirrored from the one in the previous
subgraph.

Fig. 7 illustrates the execution process of cuWide engine,
where the sparse inputs are organized as mini-batches and
transferred into GPU’s global memory. The execution
engine reads a chunk from the mini-batch, generates a sub-
graph, and executes the training algorithm with the sub-
graph. cuWide adopts a fine-granular task-based execution
model that treat SMs inside a GPU as standalone workers.

GPU ,
I
- sM
3 | Lo 95555556
% \@‘ Shared Memory| [gqgister
3 Global Memory | @
5 oy Model Eg @;““m /C;;_)
Loss 1 Model(partial) ==

@Aggregate @Warp Shuffle @ Replication @ Caching @ Loss & Apply

Fig. 7. The execution flow of cuWide engine.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 9, SEPTEMBER 2022

-| Global Memory | Shared Memory

Input Data Accum :; 1.Aggregate
S — -.‘-_ o
S = «
|- =» 2.Loss
_}-l!l!' Chunky j
S . I B :: 3. Apply
5 /]
¥ Important
Model Model Cache Ny rporean
Segements
=T >
R e A

Fig. 8. lllustration of cuWide execution. Note that the solid lines refer to
the Accum caching and the dotted lines refer to the model caching.

Each chunk computation is processed by a worker follow-
ing the ALA processing model. The training procedure is
executed on top of a subgraph.

In the Aggregate stage, sample vertices are activated.
The worker computes Accum for sample vertices with inputs
and feature weights along edges from parameter vertices,
and stores Accum into shared memory. In the view of GPU,
threads of one GPU block process the subgraph, where each
edge represents a thread. The thread executes computation
instructions with data from its connected node.

In the Loss and Apply stage, feature nodes are acti-
vated, and they gather Accum from adjacent sample nodes
and update the model. Similarly, in the view of GPU, each
thread of a block uses the Accum in the shared memory and
inputs in the global memory to calculate gradients and pre-
dictions, and updates the model parameters in the global
memory. For each subgraph, the Apply phase could not
start until all sample nodes finish the forward computing.
When processing chunks one-by-one, the training proce-
dure generates model updates in sequence as well. When
model updates of all the chunks in a mini-batch are col-
lected, the aggregated updates synchronized to the model.

4.3 Locality-Aware Access Optimizations
As previously discussed, both the spatial locality of feature
access pattern and temporal locality of feature aggregation
data Accum providing optimization opportunities of leverag-
ing GPU memory hierarchy. To leverage these opportunities,
we propose a cache-efficient partition and scheduling scheme
that removes the large amount of (random or extra) memory
access from the global memory to the on-chip memory. As
illustrated in Fig. 8, cuWide divides the shared memory into
two parts, storing important model parameters for spatial
locality and aggregation data Accum for temporal locality.
Importance-Based Model Caching. As we can see, model
parameter (e.g., w for LR) is a source of data appeared in
different stages. Large amounts of random access on global
memory are involved when updating model parameters,
leading to low performance kernel. Therefore, caching the
model parameter with shared memory will improve effi-
ciency. However, it's impossible to save the whole high
dimensional model parameter into the limited shared mem-
ory. The basic idea of caching is to store the frequently
accessed model data in high bandwidth memory. For the
wide model, the feature frequency indicates the importance
of each feature, which is proportional to the memory access
frequency of this feature during the training.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 03:00:11 UTC from IEEE Xplore. Restrictions apply.

MIAO ETAL.: CUWIDE: TOWARDS EFFICIENT FLOW-BASED TRAINING FOR SPARSE WIDE MODELS ON GPUS

Based on the skew feature distribution, we design an
importance caching strategy to optimize training perfor-
mance. Assume that the feature indexes are replaced in
descending order of the frequency of features and are parti-
tioned into segments. The size of segment and chunk are
selected in such a way that the ranges of feature and sample
vertices contained in them can be accommodated in cache,
respectively. Then the model parameters, ordered by replaced
feature indexes, is equivalent to the parameters ordered by
feature importance. The important model parameters, which
are ranked high, are cached in shared memory and written
back to global memory at the end of each iteration.

To utilize the GPU memory hierarchy, the system processes
a chunk at the granularity of segments with importance-based
model cache. As illustrated in Fig. 8, in the Aggregate stage,
the system reads a segment j of the model, and updates the
Accum data in the shared memory. The system caches the fea-
ture node segment (i.e., model segment) in the shared memory
if the access locality of this segment is relatively high. We mea-
sure the locality in terms of the average degree F;[d] of feature
nodes in this segment. To enhance the locality, the feature
node could be sorted by their degree. The whole segment
would be loaded onto shared memory and each sample node
reads model parameters (at this segment) from the cache if
E;[d] is larger than a threshold th (th > 1). Otherwise, the
system directly reads feature nodes from the global memory.
Note using cache needs coalesced shared memory access
operations read from and write back to global memory, we
choose the threshold th = 2¢/r. Here, ¢ means cost of coa-
lesced memory access and r means cost of random memory
access. The Loss and Apply stages is similar to the Agg-
regate stage, where the system loads the segment in the
shared memory if Fj[d] > th, and perform partial gradient
computation.

Cross-Stage Accumulation Caching. The classical training
schema of wide models calculates gradients in the forward
phase and uses gradients to update the model in the back-
ward phase. Unlike the classical one, we introduce feature
aggregation for the wide models, which formulates gra-
dients and predictions of wide models as functions on cer-
tain intermediate scalars, denoted by Accums. Accums can
be aggregated from input features and model parameters,
So we present the cross-stage accumulation caching which
changes the intermediate storage from global memory to
shared memory by using feature aggregation. As illustrated
in Fig. 8, Accum of sample vertices are stored in shared
memory. In the Aggregate stage, for each segment, the
system performs partial feature aggregation for this feature
segment, and adds it on the Accum in the shared memory,
and continues to perform the next segment. After all the
segments of a chunk has been processed, the system enters
Loss and Apply stage. Then it reads just a specific segment
of the model, and computes the loss and partial gradient for
this model segment with the Accum data in the shared mem-
ory. After this segment has been processed, the system adds
the partial gradient accumulation back onto global memory
and continues to perform the next model segment. As the
computation of aggregation, loss and gradients updates are
performed in shared memory, the cache of accumulation
helps the system to avoid redundant global memory
accesses to writing /reading intermediate data across stages.

4125

Note that the processing a segment (i.e., a partial chunk
of features) does not restrict the thread parallelism because
the multiple partial chunks could be processed in parallel.
The processing only limits the data access locations (i.e.,
shared memory and global memory) for a segment based
on the spatial locality, without blocking data access.

5 SYSTEM IMPLEMENTATION

To effectively utilize the GPU, we further propose two GPU-
oriented optimizations for implementing cuWide, including
columnar data representation to enhance caching efficiency,
and multi-stream execution to overlap the data transfer
with computation. The source code of cuWide has been
made publicly available at [23]. Below, we will present each
optimized implementation component, respectively.

5.1 Data Layout Optimization

In machine learning system, sample-oriented formats, e.g.,
coordinate list (COO) and compressed sparse row, are used
to organize the large-scale sparse data. They store all non-
zero elements of a row sequentially in memory allowing
fast sample-oriented traversal of feature matrix. However,
the neighbors of a node (nonzero columns in adjacency
matrix) can be scattered anywhere in the whole graph. The
sample-oriented format makes the training performance
suffer from a lot of random memory access caused by using
feature indexes to access the model parameter. A transac-
tion executed by a warp with 32 threads loads a continuous
memory block of size 128 KB. The coalesced memory access,
which is an efficient memory access pattern, coalesces the
loading and storing of the global memory issued by threads
of a warp into as few transactions as possible to minimize
DRAM bandwidth. To exploit the advantage of the coa-
lesced memory access, we should align the memory access
by using proper data organization.

To optimize data layout, we assume that the feature indexes
are replaced in descending order of the frequency of features.
We partition sample nodes into chunks, and organize the data
of each chunk with feature-oriented (column-oriented) storage
format, which sorts entries by feature index first and then by
the sample index. The feature-oriented format is similar to the
columnar representation that is commonly used in data-
bases [24], [25] for the efficient computation of aggregate
queries and other ML systems [26]. Then the model parame-
ters, ordered by replaced feature indexes, is equivalent to the
parameters ordered by feature importance. This ensures the
locality (and thus the chance of cache) when the system divides
them into segments.

Note a mini-batch could contain a large number of
chunks. During the training process, cuWWide only reshuffles
the accessing order of different chunks to randomly form
mini-batch at each epoch, with the training instances in
each chunk remaining the same. This can avoid data shuf-
fling overhead while ensuring the convergence rate.

5.2 Conflicts Resolution

The naive implementation of the aggregate on the sample ver-
tices of the subgraph incurs many conflicts, because of the
internal architecture of shared memory. Physically, shared
memory of GPU is divided into equally sized memory

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 03:00:11 UTC from IEEE Xplore. Restrictions apply.

4126

Bank index

Bank 2
Bank 30
Bank 31

© |Bank 0
= | Bank 1

4-byte word index

N}
w
S
w
pd

Accum; Accum; Accum; Accum; Accum;

Warp Threads g g g gg

Fig. 9. Replication policy of shared memory.

modules, called banks. For example, the shared memory in
NVIDIA GPU has 32 banks and each bank is 4 bytes wide. Dif-
ferent banks can be accessed simultaneously, but each bank
can only accept one access at a time. Therefore, bank conflicts
happen if threads in a warp try to load/store data from/to the
same bank. Then the access has to be serialized, which is even
worse than global memory access. Another potential problem
is the atomic conflict. When threads in a warp finish calcula-
tion of the forward stage, atomic operations cannot be
avoided because of simultaneously memory access of the
same entry in Accum vector. Atomic memory access involves
lock step and may seriously affect performance.

We adopt a sample vertex replication policy to eliminate
or reduce these conflicts. Suppose the Accums form a vector,
we replicate every entry and make all replicas consecutive.
If all 32 threads in a warp access the same entry of the
Accum vector, they can be scheduled to different replicas in
different banks. Thus, conflicts are avoided. Fig. 9 shows
the situation for 32 consecutive replications of Accum;. Each
thread in a warp can only access one bank data to avoid
conflicts. However, we can still reduce the number of repli-
cations, retain few bank conflicts to save limited shared
memory and increase mini-batch size. The number of repli-
cas is not only limited by the size of shared memory, but
also achieves a balance between the cost from conflicts and
the cost from aggregation. There are several consecutive
replicas for entries of Accums. To avoid extra threads syn-
chronization, we aggregate them by exploiting the registers
with the warp shuffle instruction “SHFL”, which is efficient
and supported by hardware.

5.3 Scaling With Stream Pipeline
The computation logic we discussed before is assumed that
all training data can be fit into GPU global memory. How-
ever, when facing large-scale training data, a streaming
copy technique is necessary because of limited CPU-GPU
memory bandwidth (only about 16 GB/s (PCle v3.0x16) or
up to 80 GB/s (NVLink)). Fortunately, asynchronous data
transfer in GPUs can be achieved by using the asynchro-
nous GPU streams, which could hide memory access
latency from GPUs to main memory and improve the utili-
zation of GPU’s computing power. Note GPU stream pipe-
line differs from the GPU warp pipeline in that the former
is is managed by the programmers with the CUDA stream
APIs hiding the CPU host memory access latency, whereas
the later managed by the streaming multiprocessor (SM)
scheduler for hiding the GPU global memory access latency.
To support efficient GPU streams, we propose a transmis-
sion protocol between main memory and device memory.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 9, SEPTEMBER 2022

. Kernel Computation
T |

. Memory Copy

(a) Stream without pipeline

I

T

(b) Stream with pipeline

Fig. 10. Stream Profiling for FM (k=3) on criteo.

Assume the training data is divided into several mini-batches
in main memory, and there is a replication of model parame-
ters in global memory, which needs to be synchronized after
each epoch. The whole workflow has three procedures: 1)
Streaming copy batch data from host memory to bigraph
buffer and label buffer in GPU global memory. 2) GPU kernel
computation. 3) When the kernel is done, synchronize the
model parameters with host memory. Then we propose the
stream pipeline to overlap the computation and transmission.

We can set more streams for concurrency. However, the
number of streams is three in our system, which is deter-
mined by dual copy engines of GPU architecture. The hard-
ware has three queues: one computation engine queue and
two copy engine queues (one for D2H and one for H2D).
Therefore, 3-way stream pipeline can utilize GPU memory
bandwidth and computation resources as many as possible.
Fig. 10 shows the real profiling results of FM on criteo data-
set, we can see the difference of stream pipeline clearly.

5.4 Kernel Optimization

Based on the ALA programming model, we present a brief
kernel code sample in Fig. 11. We highlight several standard
optimization techniques in the code snippet.

Persistent Threads. Persistent threads is a CUDA program-
ming style which sets the work size just fits the physical SM
capacity and each block pulls new work from a queue,
rather than launching more thread blocks than the hard-
ware could execute simultaneously. Using persistent
threads we can treat SMs inside a GPU as standalone work-
ers. Each chunk computation is processed by a worker fol-
lowing the ALA processing model.

Vectorized Memory Access. GPU’s assembly instructions
LD.E and ST.E load and store 32 bits from those addresses.
We can improve performance of this operation by using the
vectorized load and store instructions LD.E.{64,128} and ST.
E.{64,128}. These operations can load and store data in 64 or
128 bit widths. Using vectorized loads, we reduce the total

brief kornel
global__ void brief_kernell...)
{
int idx = blocklds.x v blockDim.x + threadlde.x;
forlint i= idw; i<numfé; i+snumblockssblockDim.x})
i

Pentent
Vectorzed

nt fidls], sidla],vla];
teintésx (Fid) (8] = ¢ casteintiesifeature_fd)[i);
t casteintios(ssmple_ig1(1];

steintass (valllil;

AggrepatelAc, fid(i], sid(§), v[i], model_parsseter);

ror(int deigw; i<num; iesnusblockssblockDim.x)

nt sid = __loglasample_id[i]); On chip
nt fid = __ldg(dfeature_id[i1); ache
loat w = __ldg(Aval[i));
Loss(Ac, fid, sid, v. model parsseter);
ApolylAc, fid, sid, learning_rate, v, model_parameter);
}
¥

Fig. 11. A brief kernel with highlighted optimization techniques.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 03:00:11 UTC from IEEE Xplore. Restrictions apply.

MIAO ET AL.: CUWIDE: TOWARDS EFFICIENT FLOW-BASED TRAINING FOR SPARSE WIDE MODELS ON GPUS 4127
TABLE 2 TABLE 3

Data Sets Statistics Configuration of the Evaluated Platform
Dataset #Samples #Features Density Size CPU 2x Intel Xeon CPU E5-2650v4, 256 GB
criteo-s 5,134,149 1,000,000 4e-5 3GB (up to 480 GFLOPS and 76 8 GB/s)
kddb 19,264,097 29,890,095 le-6 48GB GPU NVIDIA GTX 1080ti, 28 SM, 11 GB
url 2,396,130 3,231,961 4e-5 2.1GB (up to 11.3 TFLOPS and 340 GB/s)
kdd12 149,639,105 54,686,452 2e-7 21GB PCle 3.0x16 (up to 16GB/s)
criteo 45,840,617 1,000,000 4e-5 25GB

number of instructions, reduces latency, and improve band-
width utilization.

On-Chip Cache. NVIDIA GPUs have on-chip L1 cache for
each SM and allow programmers to control the cache
behavior of each memory instruction. While many GPU
applications do not benefit from the cache due to cache con-
tention, some memory instructions may benefit from the
cache as the accessed data may be frequently reused in the
near future (temporal reuse) or by other threads (spatial
reuse). Using the intrinsic instruction _ldg [1] to enable
cache-assisted read may help improve system performance

6 EXPERIMENT

In this section, we evaluate both the convergence perfor-
mance and the average epoch time of cuWide by comparing
with the state-of-the-art machine learning systems. We
select LR and FM from GLMs and factorization models to
evaluate cuWide performance, as they are the most repre-
sentative wide models and have been widely used in many
real-world scenarios [1], [8]. We also conduct experiments
to demonstrate the effectiveness of caching mechanism.
Finally, we evaluate cuWide on the datasets whose size are
larger than the GPU memory.

6.1 Experimental Setup

All the experiments are conducted on a server who has
256 GB memory and dual 12-core CPUs with hyper-thread
enabled. The experimental results are repeated for ten times
and the average results are reported to overcome random
errors and warm cache effects. We use NVIDIA GTX 1080ti
as the GPU platform, and the detailed configurations of the
GPU are shown in Table 3. All the execution time of GPU
kernel is collected by nvprof [27].

Dataset. We use four high dimensional sparse data sets
from real world [28]. Table 2 lists the statistics of these data
sets. All of these data sets are collected from CTR prediction
problems. We apply log loss function for both LR and FM in
our experiments. According to the data size, we classify the
criteo and kdd12 as large datasets, since their sizes are
larger than 20 GB. In addition, we also create a small data
set from criteo data set by random sampling, named criteo-
s. We use partial dataset (i.e., criteo-s) for kernel evaluation
whereas using the complete real datasets (i.e., criteo, kdd12)
for incorporating host transfer overhead.

Baselines. In the experiments, we compare these follow-
ing systems with our cuWide:

TensorFlow [12] is an open source machine learning frame-
work which supports running computations on a variety of
types of devices, including CPU and GPU. It translates the opti-
mized computation graph into the intermediate representation

according to the predefined operators with advanced optimi-
zation, and then the graph is compiled to executable code for
the target device. We implemented the mini-batch SGD algo-
rithms with sparse tensor in TensorFlow for LR training using
both graph execution (latest 1.15 version) and eager execution
(latest 2.1 version). TensorFlow’s eager execution is an impera-
tive programming environment that evaluates operations
immediately, without building graph.

cuWide-stage. To clearly show the superiority of flow-
based strategy cuWide (cuWide-flow), we also provide a
C++ implementation (cuWide-stage) with CUDA 10.1 based
on the stage-based strategy in Fig. 1a. It calculates gradients
in the forward stage and uses gradients to update the model
in the backward stage. Gradients are stored in global mem-
ory after the forward stage, and are reloaded for the back-
ward stage.

DIMMWitted [11] is one of the state-of-the-art multi-core
ML tools on NUMA machines. Ce et.al studied the tradeoff
in access methods, model replication, and data replication.

LibFM [16] is a widely used library for factorization
machines that features stochastic gradient descent and alter-
nating least squares optimization.

Training Details. In our experiments, LR is optimized by
mini-batch SGD with different batch sizes [512,1024]. Much
larger batch size evaluation is discussed in Section 6.3. The
learning rate of LR is 0.5, which is determined by the grid
search among the hyper-parameter space [0.005, 0.05, . .., 500]
for the best convergence. We split the data set into the train set
(90 percent) and the validation set (10 percent). All the sys-
tems start training from the same point (0, 0.69) and we just
exclude the beginning of the convergence curves and set the
log x-scale for better demonstration [29]. All the systems are
convergent with the same early stop [30] criteria (10 epochs)
to avoid overfit models, i.e., the training is terminated when
the current iteration validation loss is larger than the average
loss of the latest 10 epochs. The evaluation time on validation
setis not included.

Except TensorFlow, all the systems including cuWide,
cuWide-stage, TensorFlow Eager and PyTorch load the
train set into the global memory of GPU before the training
procedure. TensorFlow, using the graph execution [12],
transfers the mini-batch data from devices to the host in
each iteration. Although it supports to store the data into
constant tensor, which is stored inline in the graph data
structure and may be replicated a few times, this method
uses more memory and exceeds the limit of 2 GB for serial-
izing individual tensors in TensorFlow.'

1. Another choice is to initialize a variable with the data set and split
it into mini batches. However, the slice operation leads to a dramati-
cally performance drop.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 03:00:11 UTC from IEEE Xplore. Restrictions apply.

4128
batch_size=512
v
LO" _— m— cuWide-flow
p . m cuWide-stage
_g wes= TensorFlow
k) 0.48 - w== TensorFlow Eager
£ 046 : ; ' : : ——
10! 107 10° 10* 10° 10° 107
batch_size=1024
v
§ m— cuWide-flow
= 0.50 1 m— cuWide-stage
_g s TensorFlow
% 0.48 - wm== TensorFlow Eager
£ 0.46 , ; : : : —
10? 109 104 10° 10° 10’
Time (ms)

Fig. 12. Convergence performance comparison on criteo-s dataset for
LR with different batch size.

6.2 GPU Performance Comparisons

Fig. 12 shows the end-to-end convergence performance of
LR among the state-of-the-art GPU-based approaches on
the criteo-s data set with batch size of 1,024. Although
cuWide only reshuffles the accessing order of different
chunks to randomly form mini-batch at each epoch, it exhib-
ited ignorable impact on final convergent validation loss
values (e.g., no more than 0.003 difference with those of
other systems). We also see that the convergence speed of
cuWide-flow is the fastest for all cases, more than one or
two orders of magnitude speedup compared to cuWide-
stage and Tensorflow, respectively.

The figure shows that cuWide-stage converges at least 10x
faster than TensorFlow. To figure out the reason of the perfor-
mance gap among these staged-based systems, we show the
average epoch time of these systems in Table 4. For Tensor-
Flow, we find that the GPU time only takes up 10 percent of
total time. There exists large amount of GPU idle time during
the whole procedure. The idle time comes from the extra GPU
kernel function calls (i.e., the framework overhead). Specifi-
cally, TensorFlow translates the optimized computation graph
into the intermediate representation according to predefined
basic operators (e.g., Sum, Add, Mul, Neg) and then generates
executable code for GPU, thus bringing a large amount of GPU
kernel function calls. For TensorFlow Eager, the problem of
idle GPU is much more serious. The reason may comes from
the static design of TensorFlow which enables more graph
operators scheduling optimization than TensorFlow Eager.

For a fair comparison, we evaluate the GPU kernel time for
these systems (i.e., excluding the framework overhead). As
shown in Table 4, TensorFlow needs hundreds of milliseconds
for memory copy between the device and host. While Tensor-
Flow Eager can utilize the GPU computation capacity better

TABLE 4
Average Epoch Time (ms) for LR on criteo-s With Batch Size =
1024

criteo-s Total time GPU time GPU kernel time
cuWide-flow 23 22 22
cuWide-stage 365 311 (x14) 311 (x14)
TensorFlow 7914 805 (x37) 493 (x22)
TensorFlow Eager 9,107 614 (x28) 597 (x27)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 9, SEPTEMBER 2022

cuWide-flow cuWide-stage
/’

40040 / L 400

28 20020 4 7 / - 200
) b —_
< 0o o ' 0=
;2 % [sa]
= 0 1 2 Q0
! TensorFlow e
5 £
g o

- 400
£ 20+ | H
£ o nlm [2005
g ag il i i @
= 0 . . -0 -
L 01234567 8 910111213141516171819 £
[TensorFlow Eager £
£ =]
& 204 ## Kernel time 7 L 400 =

EEE Memory bandwidth |
10 A ; ‘@ |200
| i Fd
012345678 0101112131415161718192021
Kernel ID

Fig. 13. The percentage of execution time and the utilization of memory
bandwidth for GPU kernels for LR on criteo-s with batch size = 1024.

because of GPU resident input data. We find that cuiWide-flow
still at least one order of magnitude faster than other stage-
based baselines because of exploiting access locality.

To figure out the speed-up between cuWide and our base-
lines, we further show the execution time and memory band-
width of specific GPU kernels of these systems in Fig. 13.
Although TensorFlow involves many small model-free GPU
kernel calls (such as computation and data management,
device query [31], [32]) for more general machine learning
applications, the majority of cost is still come from a few large
model-related kernels (e.g., multiplication, compute gradient
and ApplyGradient Descent). So only removing many
separate small kernels used in the framework cannot achieve
high performance improvement. cuWide-stage further dem-
onstrates this by manually removing the unnecessary opera-
tions in TensorFlow, with only three GPU kernels including
multiplication, gradient computation, and apply gradients.

With the proposed caching mechanism, cuWide-flow
fuses Aggregate-Loss-Apply functions into a single
GPU kernel. Note that the execution time depends on both
the memory bandwidth and the total amount of global
memory access. cuWide significantly outperforms other
baselines through removing a large amount of (random or
extra) global memory accesses with locality-aware optimi-
zations. As shown in the Fig. 13, the importance-based
model caching enables cuWide-flow to achieve more than
10x larger memory bandwidth than the baselines that
adopt SparseTensorDenseMatMul operator for the for-
ward and gradient computations (e.g., kernels 0, 1 in
cuWide-stage and kernels 16, 18 in TensorFlow). Also, the
cross-stage accumulation caching allows cuWide-flow to
avoid generating intermediate gradient data in global mem-
ory and to update the model directly, which removes the
ApplyGradient Descent operation of baselines (e.g., kernel 2
in cuWide-stage and kernel 19 in TensorFlow).

6.3 Impact of Batch Size

We further analyze the batch size impact on the conver-
gence performance in this subsection. Fig. 12 shows that
large batch size can reduce the gap between cuWide and
stage-based solutions. Then we conduct an experiment on

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 03:00:11 UTC from IEEE Xplore. Restrictions apply.

MIAO ETAL.: CUWIDE: TOWARDS EFFICIENT FLOW-BASED TRAINING FOR SPARSE WIDE MODELS ON GPUS

w
o
L=1

—+— cuWide-stage
cuWide-flow

200 4

-
=1
=

GPU Kernel Time {ms)

1k 2k ak 6k 8k
Batch Size

Fig. 14. The GPU kernel time per epoch for LR on criteo-s.

larger batch sizes (up to 16k) and make a comparison for
cuWide (cuWide-flow) and cuWide-stage.

As shown in Fig. 14, cuWide always outperforms
cuWide-stage. When increasing the batch size, the per-
epoch GPU kernel time of cuWide-stage decreases due to
the higher utilization ratio of GPU resources in the begin-
ning. It has also been observed in other related works [17],
[33] that, as the matrix dimensions are modified, the perfor-
mance may not strictly monotonic. So the GPU kernel time
of cuWide-stage has an increase in the figure. By contrast,
per-epoch GPU kernel time of cuWide tends to be stable
due to fixed chunk computation under various batch size.

The experimental results also show that large batch size
cannot infinitely speed up for stage-based strategy. By con-
trast, we find that cuWide achieves stable performance as
the batch size grows, because it performs at the fine granu-
larity of chunks. The experiment shows that the speed up of
cuWide still exists for larger batch sizes due to high shared
memory utilization.

In practice, wide models are often memory bounded. There-
fore, we prefer to update the model more frequently within the
limited data throughput, thus selecting smaller batch sizes.
The state-of-the-art CPU-based systems which will be com-
pared in the next subsection apply SGD (batch size = 1) for bet-
ter speed-up [11]. And as suggested in [34], the batch size is
typically chosen between 1 and a few hundreds. Smaller batch
sizes lead to faster convergence, but stage-based strategy can-
not fully utilize the hardware capacity with these batch sizes.

6.4 Performance Comparison With CPU-Based
Approaches

We compare cuWide with the state-of-the-art CPU-based
solution DIMMWitted, which uses data replication and
model replication for efficiency. The experiments are con-
ducted on criteo-s, kddb and url data sets, as shown in
Table 2. We keep the hardware platform and hyperpara-
meter settings the same with cuWide in Section 6.2. DIMM-
Witted only supports SGD on LR models, rather than mini-
batch SGD. Fig. 15 shows the comparison results between
the two CPU-based systems and cuWide (batch size=1024).
It is clear that cuWide achieves 18~ 50x speedup of the
average epoch time on different data sets.

The convergence performance comparison also demon-
strates that highly optimized CPU program can outperform
state-of-the-art GPU-based solutions (e.g., TensorFlow). The
reason is that wide model training is memory bounded
and existing systems only focus on the computation capac-
ity of GPU ignoring the high memory bandwidth of GPU
(340 GB/s GPU and 76.8 GB/s CPU, as shown in Table 3).
We propose the flow-based strategy to reduce the global
memory access bottleneck by involving shared memory of

4129

. DIMMWitted
N cuWide

eriten.s kedb url

Fig. 15. Average epoch time comparison on LR.

GPU, thus improving the usage of memory bandwidth of
GPU. Therefore, cuWide can outperform the state-of-the-art
CPU-based solutions in our experiments.

6.5 The Effectiveness of Spatial-Temporal Caching
cuWide outperforms other systems by a significant margin
due to the flow-based strategy, which harnesses the spatial-
temporal locality of wide models to leverage the memory
hierarchy of GPU. In order to demonstrate to what extent
each caching mechanism contributes, we analyze the speed
up of the optimization in different stages of cuWide by ker-
nel profiling metrics. Fig. 16 shows a breakdown comparison
of LR on criteo-s, kddb and url datasets. It is clear to see that
the importance-based model caching and cross-stage accu-
mulation caching both improves the performance. Taking
kddb as an example, with the accumulation caching, cuWide
achieves 4.9x speedup than Tensorflow and 1.9x than stage-
based training baseline. When further applying model cach-
ing, cuWide further bring 7.4 x speedup the baselines.

We find that the different speed-ups may have relevance
with feature density or dataset size. Typically, larger dataset
size and lower density (i.e., kddb) leads to a more random
access and thus significant speed-up over TensorFlow. More-
over, the performance of cuWide is also affected by the feature
distribution. As shown in Fig. 3, criteo-s has a more skew dis-
tribution, which leads to better locality and thus a larger
speed-up over culWWide-stage than the other two datasets.

6.6 The Performance on Large Dataset

To efficiently handle large data set that cannot fit into GPU’s
global memory, we scale up cuWide with multi-stream tech-
nique. We conduct the experiments with FM model using dif-
ferent factor latent dimensions (k=3 and k=10) on three data
sets (i.e., criteo-s, criteo, and kdd12) which are larger than the
11 GB GPU global memory. We implement cuWide with
stream pipeline enabled and disabled, and compare the per-
formance with LibFM and TensorFlow. Table 5 lists the
results. The results show that cuWide could scale to large
datasets well, and achieve 1.7~ 5.2x speedup with stream
pipeline than LibFM [16]. Our evaluations on real world data
sets have demonstrated that cuWide outperforms CPU-based
solutions by applying the stream pipeline even though that
the whole dataset cannot fit into the GPU global memory.

S TensorFlow
1500 N cuWide-stage
s+ Accurn Cache
-

+ Accum Cache &
Model Cache

1000

w
(=1
o

1.1x

GPU kernel time (ms)

o

kddb url

criteo-s

Fig. 16. System speed up from the optimization in cuWide.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 03:00:11 UTC from IEEE Xplore. Restrictions apply.

4130

TABLE 5
Average Epoch Time (ms) Comparison for FM

Dataset cuWidew/o cuWidew/ LibFEM TensorFlow

pipeline pipeline (CPU) (GPU)
k=3

criteo-s 2,590 1,450 7,452 10,955

criteo 30,860 17,220 73,130 97,825

.kdd12 39,060 19,550 73,654 2,383,593

k=10

criteo-s 4,320 2,820 12,470 12,431

criteo 51,520 31,520 97,574 111,012

kdd12 84,090 58,480 102,081 712,362

Due to the complexity of FM (e.g., multiple accumulation
in (5) and (6)), the TensorFlow is still bounded by the large
amount of random global memory access of GPU, instead
of host-GPU data transfer. So cuWide is able to outperform
TensorFlow by significantly removing the random global
memory access with the proposed caching mechanism. For
models with less arithmetic intensity, such as LR, host-GPU
data transfer might be performance bottleneck given the
limited PCIe bandwidth. However, cuWide still provides
high performance potential for the emerging NVLink GPU
systems that provide much higher bandwidth than PCle.

For more scale training, cuWide is easily to be general-
ized to such distributed environments by applying data par-
allel] with a model synchronization mechanism (e.g., host
memory, parameter server [35], [36], [37] or All-Reduce [38])
due to the scalability of the mini-batch SGD algorithm. We
can also embed cuWide into TensorFlow as an special oper-
ator and utilize the parameter server in TensorFlow for
communication. In such cases, the synchronization commu-
nication cost becomes the system bottleneck and many dis-
tributed training algorithms [39], [40], [41], [42] has been
studied. We leave these as our future works.

6.7 Performance on Advanced GPU

We further evaluate the proposed ideas using more advan-
ced GPUs such as NVIDIA V100 (80 SM, 32 GB, up to 14
TFLOPS and 900 GB/s) that has 10x bigger shared memory
and 3x greater effective device memory bandwidth than
1080ti. In such a case, per-kernel execution overhead can
become a bigger performance limiter.

Table 6 shows the performance of cuWide-flow is much
higher than other baselines on V100. By comparing Tables 6
and 4, we see that speed-ups of cuWide-flow on V100 (see
Table 6) becomes significantly larger than that on GTX
1080ti. For example, increasing from 22x on GTX 1080ti to
34x on V100 compared to TensorFlow. This result shows
our idea scales with GPU design and resources.

7 RELATED WORK

Machine learning and data mining problems have been gain-
ing popularity because of their successes in many real-world
services, e.g., recommendation [1], advertising [43], etc.
Wide models like LR [44], LSVM [45], FM etc., learn from a
wide set of features. Generalized linear models have been
studied by [2] and they train the model over join operations

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 9, SEPTEMBER 2022

TABLE 6
Average Epoch Time (ms) for LR With Batch Size = 1024 on
V100
criteo-s Total time GPU time GPU kernel time
cuWide-flow 12 11 11
cuWide-stage 418 330 (x30) 330 (x30)
TensorFlow 2,894 710 (x65) 376 (x34)

that are easy to implement over existing RDBMSs. [46], [47]
further propose the shared computation of aggregates over
normalized databases. Inspired by these approaches, we
propose the feature aggregation and ALA programming
interfaces to formulate wide model training. However, there
are distinct memory accesses and computation cost for
emerging parallel hardware such as GPUs, which lead to
new challenges for this topic.

GPU has performed its high efficiency in accelerating gen-
eral computation tasks, and plenty of GPU-based implemen-
tation of machine learning models are proposed to achieve
high performance of training models on GPU [48], [49].
There are some open-sourced machine learning systems on
GPU, such as H20.ai [50], cuML of RAPIDS [51]. However,
these libraries only support dense wide model training. Snap
ML [29] offers a high-performance implementation of
SDCA [52] for the distributed GPU cluster environment. The
released version is only for the ppc64le architecture.

ThunderSVM [53], [54] provides a high performance
GPU-based SVM library. But it concentrates on solving the
SVMs with SMO algorithm, which is naturally different
from the mini-bath SGD algorithm and not available for
other wide models (e.g., LR, LSR, FM). BIDMach [55] adopts
a zero memory allocation technique to overcome the alloca-
tion barrier during allocate and recycle matrix (or graph)
objects in expressions. However, it implements each model
with the model-specific design so that optimization cannot
be reused among different models. We have made some
experiments with BIDMach, however the hardware effi-
ciency of BIDMach is not competitive. Moreover, the loss of
BIDMach has to be collected automatically on a transparent
validation set sampled from the training procedure, rather
than the common test loss or train loss. Due to above rea-
sons, we exclude it from our baselines.

Popular dataflow-based machine learning systems like
TensorFlow [12] are mainly designed for neural network
computing and lack of optimization for wide models due to
the often sparse distribution. PyTorch [13] adopts cuS-
PARSE to support sparse data computation, which is far
from the roofline limit on typical sparse machine learning
data with skew distribution [55]. cuWide introduces the
bigraph abstraction and represents wide models in a unified
framework with system-level optimization. The flow-based
strategy is naturally to break a mini-batch into sub-batches
and reduce the memory footprint such that the intermediate
data of an entire sub-batch fits in on-chip memory within a
persistent fused kernel. This insight has been studied in
other deep learning models, such as CNN [56] and
RNN [57] and even sparse RNN [58]. cuWide targets on
wide models which are facing challenges on the spatial-tem-
poral locality and quiet different from deep models.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 03:00:11 UTC from IEEE Xplore. Restrictions apply.

MIAO ETAL.: CUWIDE: TOWARDS EFFICIENT FLOW-BASED TRAINING FOR SPARSE WIDE MODELS ON GPUS

Several approaches have analyzed thread conflicts on
GPUs and achieved a good performance. The work [59] has
measured the influence of atomic operations conflicts in both
global memory and shared memory of GPU and concluded a
linear penalty in conflicts. Garaph [60] further proposed a
customized replication method to resolve threads conflicts
in processing large-scale graph data. cuWide employs a sam-
ple-specific replication policy integrated into the flow-based
strategy to optimize the forward stage of wide models.

8 CONCLUSION

Wide models have been deployed in many real-world applica-
tions. One important problem of the models is to design effi-
cient training solutions. In this paper, we proposed a new
GPU-training framework for large-scale wide models, called
cuWide. To accelerate the training by fully exploiting the mem-
ory hierarchy in GPU, cuWide applies a novel flow-based
training strategy. We first introduced the ALA programming
model for flexibly developing customized wide models while
benefiting from our locality-aware optimization techniques in
a unified manner. We then proposed caching optimizations
for executing flow-based training, exploiting the spatial and
temporal locality of data to optimize the memory access of
wide model. Through the extensive experiments, it clearly
demonstrates that cuWide outperforms other state-of-the-art
systems for training large-scale wide models.

ACKNOWLEDGMENTS

This work was supported by the National Key Research and
Development Program of China (No.2018YFB1004403), the
National Natural Science Foundation of China under Grant
(No. 61832001, 61972004, 61702015, U1936104, 61702016),
the Fundamental Research Funds for the Central Universi-
ties 2020RC25, Beijing Academy of Artificial Intelligence
(BAAI), PKU-Baidu Fund 2019BD006, and PKU-Tencent
Joint research Lab.

REFERENCES

[1] H-T.Chengetal., “Wide & deep learning for reccommender systems,”
in Proc. 1st Workshop Deep Learn. Recommender Syst., 2016, pp. 7-10.

[2] A.Kumar, J. Naughton, and J. M. Patel, “Learning generalized lin-
ear models over normalized data,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2015, pp. 1969-1984.

[3] Z.Zhang, J. Jiang, W. Wu, C. Zhang, L. Yu, and B. Cui, “MLIib*:
Fast training of GLMs using spark MLIlib,” in Proc. IEEE 35th Int.
Conf. Data Eng., 2019, pp. 1778-1789.

[4] L.Yu, L. Wang, Y. Shao, L. Guo, and B. Cui, “GLM+: An efficient
system for generalized linear models,” in Proc. IEEE Int. Conf. Big
Data Smart Comput., 2018, pp. 293-300.

[5] H. B. McMahan et al., “Ad click prediction: A view from the
trenches,” in Proc. 19th ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2013, pp. 1222-1230.

[6] W. Liu et al., “Field-aware probabilistic embedding neural net-
work for CTR prediction,” in Proc. 12th ACM Conf. Recommender
Syst., 2018, pp. 412-416.

[7] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, “DeepFM: A factoriza-
tion-machine based neural network for CTR prediction,” in Proc.
26th Int. Joint Conf. Artif. Intell., 2017, pp. 1725-1731.

[8] T.Graepel,]. Q. Candela, T. Borchert, and R. Herbrich, “Web-scale
Bayesian click-through rate prediction for sponsored search
advertising in Microsoft’s bing search engine,” in Proc. 27th Int.
Conf. Mach. Learn., 2010, pp. 13-20.

[9] Z.Gharibshah, X. Zhu, A. Hainline, and M. Conway, “Deep learn-
ing for user interest and response prediction in online display
advertising,” Data Sci. Eng., vol. 5, pp. 12-26, 2020.

4131

[10] I Naseem, R. Togneri, and M. Bennamoun, “Linear regression for
face recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32,
no. 11, pp. 2106-2112, Nov. 2010.

[11] C.Zhangand C. Ré, “DimmWitted: A study of main-memory statis-
tical analytics,” Proc. VLDB Endowment, vol. 7, pp. 1283-1294, 2014.

[12] M. Abadi ef al., “TensorFlow: A system for large-scale machine
learning,” in Proc. 12th USENIX Conf. Operating Syst. Des. Imple-
mentation, 2016, pp. 265-283.

[13] A.Paszke et al., “Automatic differentiation in PyTorch,” 2017.

[14] E.P.Xing, Q. Ho, P. Xie, and D. Wei, “Strategies and principles of dis-
tributed machine learning on big data,” Eng., vol. 2, pp. 179-195, 2016.

[15] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Priter: A distributed
framework for prioritized iterative computations,” in Proc. 2nd
ACM Symp. Cloud Comput., 2011, Art. no. 13.

[16] S. Rendle, “Factorization machines with 1ibFM,” ACM Trans.
Intell. Syst. Technol., vol. 3, 2012, Art. no. 57.

[17] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distrib-
uted deep learning: An in-depth concurrency analysis,” ACM
Comput. Surv., vol. 52, pp. 65:1-65:43, 2019.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in Proc. 25th Int.
Conf. Neural Inf. Process. Syst., 2012, pp. 1097-1105.

[19] Nvidia cuda programming guide, [Online]. Available: https://
docs.nvidia.com/cuda/cuda-c-programming-guide

[20] M. M. Alam, K. S. Perumalla, and P. Sanders, “Novel parallel
algorithms for fast multi-GPU-based generation of massive scale-
free networks,” Data Sci. Eng., vol. 4, pp. 61-75, 2019.

[21] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein, “Distributed GraphLab: A framework for
machine learning and data mining in the cloud,” Proc. VLDB
Endowment, vol. 5, pp. 716-727,2012.

[22] J. K. Kim et al., “STRADS: A distributed framework for scheduled
model parallel machine learning,” in Proc. 11th Eur. Conf. Comput.
Syst., 2016, Art. no. 5.

[23] cuwide, [Online]. Available: https://github.com/DMALab/cuWide

[24] M. Zukowski, M. Van de Wiel, and P. A. Boncz, “Vectorwise: A
vectorized analytical DBMS,” in Proc. IEEE 28th Int. Conf. Data
Eng., 2012, pp. 1349-1350.

[25] S. Idreos, F. Groffen, N. Nes, S. Manegold, S. Mullender, and
M. Kersten, “MonetDB: Two decades of research in column-
oriented database,” IEEE Data Eng. Bull., 2012.

[26] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting sys-
tem,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2016, pp. 785-794.

[27] Nvidia Crop., “Profiler :: Cuda toolkit documentation,” 2019.
[Online]. Available: https:/ /docs.nvidia.com/cuda/profiler-users-
guide/index.html

[28] C-C. Chang and C-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3,2011, Art. no. 27.

[29] C.Dinner et al., “Snap ML: A hierarchical framework for machine
learning,” in Proc. 32nd Int. Conf. Neural Inf. Process. Syst., 2018,
pp- 250-260.

[30] G. Raskutti, M. J. Wainwright, and B. Yu, “Early stopping and

non-parametric regression: An optimal data-dependent stopping

rule,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 335-366, 2014.

Y. Gao et al., “Estimating GPU memory consumption of deep

learning models,” Microsoft, Redmond, WA, Tech. Rep. MSR-TR-

2020-20, May 2020.

[32] P. Yu and M. Chowdhury, “Salus: Fine-grained GPU sharing
primitives for deep learning applications,” CoRR, 2019.

[33] Y. Oyama, A. Nomura, I. Sato, H. Nishimura, Y. Tamatsu, and
S. Matsuoka, “Predicting statistics of asynchronous SGD parame-
ters for a large-scale distributed deep learning system on GPU
supercomputers,” in Proc. IEEE Int. Conf. Big Data, 2016, pp. 66-75.

[34] Y. Bengio, “Practical recommendations for gradient-based train-
ing of deep architectures,” in Neural Networks: Tricks of the Trade.
Berlin, Germany: Springer, 2012, pp. 437-478.

[35] M. Liet al., “Scaling distributed machine learning with the param-
eter server,” in Proc. 11th USENIX Conf. Operating Syst. Des. Imple-
mentation, 2014, pp. 583-598.

[36]]. Jiang, B. Cui, C. Zhang, and L. Yu, “Heterogeneity-aware dis-
tributed parameter servers,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2017, pp. 463-478.

[37]1 Z. Zhang, B. Cui, Y. Shao, L. Yu, J. Jiang, and X. Miao, “PS2:
Parameter server on spark,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2019, pp. 376-388.

[38] S.Kim et al., “Parallax: Sparsity-aware data parallel training of deep
neural networks,” in Proc. 14th EuroSys Conf., 2019, pp. 43:1-43:15.

[31]

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 03:00:11 UTC from IEEE Xplore. Restrictions apply.

https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://github.com/DMALab/cuWide
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html

4132

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 9, SEPTEMBER 2022

S. Ghadimi, G. Lan, and H. Zhang, “Mini-batch stochastic approx-
imation methods for nonconvex stochastic composite opti-
mization,” Math. Program., vol. 155, no. 1/2, pp. 267-305, 2016.

X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel sto-
chastic gradient for nonconvex optimization,” in Proc. 28th Int.
Conf. Neural Inf. Process. Syst., 2015, pp. 2737-2745.

J. Jiang, F. Fu, T. Yang, Y. Shao, and B. Cui, “SKCompress: Com-
pressing sparse and nonuniform gradient in distributed machine
learning,” VLDB |., vol. 29, no. 5, pp. 945-972, 2020.

Z. Zhang, W. Wu,]. Jiang, L. Yu, B. Cui, and C. Zhang,
“ColumnSGD: A column-oriented framework for distributed sto-
chastic gradient descent,” in Proc. IEEE 36th Int. Conf. Data Eng.,
2020, pp- 1513-1524.

L. Yan, W.-]. Li, G.-R. Xue, and D. Han, “Coupled group lasso for
web-scale CTR prediction in display advertising,” in Proc. 31st Int.
Conf. Mach. Learn., 2014, pp. 802-810.

J. Liang, Y. Song, D. Li, Z. Wang, and C. Dang, “An accelerator for
the logistic regression algorithm based on sampling on-demand,”
Sci. China Inf. Sci., vol. 63, no. 6, 2020, Art. no. 169102.

G. Guo, H. Wang, Y. Yan, L. Zhang, and B. Li, “Large margin deep
embedding for aesthetic image classification,” Sci. China Inf. Sci.,
vol. 63, no. 1, 2020, Art. no. 119101.

M. Abo Khamis, H. Q. Ngo, X. Nguyen, D. Olteanu, and M. Schleich,
“In-database learning with sparse tensors,” in Proc. 37th ACM SIG-
MOD-SIGACT-SIGAI Symp. Princ. Database Syst., 2018, pp. 325-340.
M. A. Khamis, H. Q. Ngo, X. Nguyen, D. Olteanu, and M. Schleich,
“AC/DC: In-database learning thunderstruck,” in Proc. 2nd Work-
shop Data Manage. End-To-End Mach. Learn., 2018, Art. no. 8.

K. Li, J. Chen, W. Chen, and J. Zhu, “SaberLDA: Sparsity-aware
learning of topic models on GPUs,” in Proc. 22nd Int. Conf. Archi-
tectural Support Program. Lang. Operating Syst., 2017, pp. 497-509.
X. Xie, W. Tan, L. L. Fong, and Y. Liang, “CuMF_SGD: Parallel-
ized stochastic gradient descent for matrix factorization on
GPUs,” in Proc. 26th Int. Symp. High-Perform. Parallel Distrib. Com-
put., 2017, pp. 79-92.

A. Candel, V. Parmar, E. LeDell, and A. Arora, “Deep learning
with H20,” H20. ai Inc, 2016.

cuml: Rapids machine learning library, [Online]. Available:
https:/ /rapids.ai

S. Shalev-Shwartz and T. Zhang, “Stochastic dual coordinate
ascent methods for regularized loss minimization,” J. Mach. Learn.
Res., vol. 14, no. Feb, pp. 567-599, 2013.

Z. Wen, J. Shi, Q. Li, B. He, and J. Chen, “ThunderSVM: A fast
SVM library on GPUs and CPUs,” |. Mach. Learn. Res., vol. 19,
pp- 21:1-21:5, 2018.

Z. Wen, J. Shi, B. He, J. Chen, and Y. Chen, “Efficient multi-class
probabilistic SVMs on GPUs,” IEEE Trans. Knowl. Data Eng.,
vol. 31, no. 9, pp. 1693-1706, Sep. 2019.

J. Canny and H. Zhao, “BIDMach: Large-scale learning with zero
memory allocation,” in Proc. BigLearn Workshop NeurIPS, 2013,
Art. no. 117.

S. Lym, A. Behroozi, W. Wen, G. Li, Y. Kwon, and M. Erez, “Mini-
batch serialization: CNN training with inter-layer data reuse,” in
Proc. Conf. Mach. Learn. Syst., 2019.

G. Diamos et al., “Persistent RNNs: Stashing recurrent weights on-
chip,” in Proc. 33rd Int. Conf. Mach. Learn., 2016, pp. 2024-2033.

F. Zhu,]. Pool, M. Andersch, J. Appleyard, and F. Xie, “Sparse
persistent RNNs: Squeezing large recurrent networks on-chip,” in
Proc. Int. Conf. Learn. Representations, 2018.

J. Gomez-Luna, J. M. Gonzalez-Linares, J. 1. B. Benitez, and
N. G. Mata, “Performance modeling of atomic additions on GPU
scratchpad memory,” IEEE Trans. Parallel Distrib. Syst., vol. 24,
no. 11, pp. 2273-2282, Nov. 2013.

L. Ma, Z. Yang, H. Chen, J. Xue, and Y. Dai, “Garaph: Efficient
GPU-accelerated graph processing on a single machine with bal-
anced replication,” in Proc. USENIX Conf. Usenix Annu. Tech.
Conf., 2017, pp. 195-207.

Xupeng Miao received the BSc degree in com-
puter science and technology from Northeastern
University, China, in 2017. Now he is currently
working toward the third year PhD degree in the
School of EECS, Peking University, China. His
research interests include gpu acceleration, distrib-
uted deep learning system and graph analysis.

Lingxiao Ma is currently working toward the fifth
year PhD degree in the School of EECS, Peking Uni-
versity, China. His research works are focused on
building efficient parallel systems for large-scale
data analytics scenarios, e.g., machine learning,
graph processing, through leveraging modern hard-
ware like GPU.

Zhi Yang is an associate professor with the
School of EECS, Peking University, China. Topics
he has been working on include efficient parallel
systems for large-scale data analytics, design
and optimization of distributed systems, and
social network application.

Yingxia Shao is an associate researcher with the
School of Computer Science, Beijing University of
Posts and Telecommunications, China. His
research interests include large-scale graph anal-
ysis, parallel computing framework, and knowl-
edge graph analysis.

Bin Cui (Senior Member, IEEE) is a professor
with the School of EECS and director of Institute
of Network Computing and Information Systems,
Peking University, China. His research interests
include database systems, and data mining. He
has published more than 100 research papers,
and is the winner of Microsoft Young Professor-
ship award (MSRA 2008), and CCF Young Scien-
tist award (2009).

Lele Yu received the PhD degree from Peking
University, China, in 2018. He is a researcher in
Tencent Inc, China. His interests include distrib-
uted ML, big data processing and parallel com-
puting systems, and Topic modeling.

Jiawei Jiang received the PhD degree from
Peking University, China, in 2018. He is a postdoc
in the Department of Computer Science, ETH
Zurich, Switzerland. His interests include distrib-
uted ML, communication optimization and GBDT
algorithms.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 03:00:11 UTC from IEEE Xplore. Restrictions apply.

https://rapids.ai

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

