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ABSTRACT

Embedding models have been an effective learning paradigm for

high-dimensional data. However, one open issue of embedding

models is that their representations (latent factors) often result in

large parameter space. We observe that existing distributed train-

ing frameworks face a scalability issue of embedding models since

updating and retrieving the shared embedding parameters from

servers usually dominates the training cycle. In this paper, we pro-

pose HET, a new system framework that significantly improves the

scalability of huge embedding model training. We embrace skewed

popularity distributions of embeddings as a performance oppor-

tunity and leverage it to address the communication bottleneck

with an embedding cache. To ensure consistency across the caches,

we incorporate a new consistency model into HET design, which

provides fine-grained consistency guarantees on a per-embedding

basis. Compared to previous work that only allows staleness for

read operations, HET also utilizes staleness for write operations.

Evaluations on six representative tasks show that HET achieves

up to 88% embedding communication reductions and up to 20.68×
performance speedup over the state-of-the-art baselines.
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1 INTRODUCTION

To train a model on high-dimensional data, such as words in a cor-

pus of text [9, 39, 43] or the user-item interaction data [16, 46, 55],

it is common to use an embedding model, which projects a sparse

high-dimensional feature space, into a continuous low-dimensional

embedding space. For example, in a language model, a training ex-

ample might be a sparse vector with non-zero entries corresponding

to the IDs of words in a vocabulary, and the distributed represen-

tation for each word will be a lower-dimensional vector. “Wide
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and deep learning” [10] creates distributed representations from

cross-product transformations on categorical features. Embedding

model is common at modern web companies (e.g., Facebook [40],

Google [12] and Tencent [50]), which have been recognized as

an effective learning paradigm to extract useful information for

downstream tasks such as recommendation.

As each feature needs to be represented by a set of embeddings

(i.e., latent vectors), many embeddingmodels are at a giant scale and
are too large to copy to a worker on every use, or even to store in

RAM on a single host. For instance, the parameters of a real-world

document embedding model in Google [7, 13] occupies several

terabytes, and the industrial click-through rate prediction model in

Baidu [54] has 10
11

input sparse features and also requires 10 Tb

parameters. For this reason, it is challenging to scale embedding

models up to large-scale use cases, in whichmillions or even billions

of parameters need to be learned.

Modern distributed ML systems (e.g., TensorFlow [7]) typically

adopt the parameter server [29] framework to scale out models.

The server usually maintains the globally shared parameters by

aggregating updates from the workers and updating the global

parameters. Workers communicate only with the server nodes,

updating and retrieving the shared parameters. ExistingML systems

usually support data parallelism where a worker usually contains a

replica of the ML model and is assigned an equal-sized partition of

the entire training data. Bulk Synchronous Parallel (BSP) [15] or

Asynchronous Parallel (ASP) [33] are usually adopted for updating

the model parameters during distributed training.

However, this setup faces a scalability issue for large embed-

ding models [47, 54]. We observe that the greatest inefficiency

comes from updating and retrieving the shared feature embedding
parameters through a limited bandwidth link. For example, using

TensorFlow with ASP, up to 86% of training time is spent on em-

bedding fetching and updating, which dominates the training cycle.

The major reason is that an embedding model often uses deep neu-

ral networks with low computational complexity, comparing with

the giant embedding data. Accordingly, the computation takes a

much shorter time than the reads and writes of remote embedding

data. Moreover, with the increasing gap between emerging pow-

erful accelerators and the slow growth of network bandwidth, the

embedding communication bottleneck would become even more

severe. To our knowledge, there is little prior work addressing the

scalability issue of embedding models in a distributed environment.

In this paper, we proposeHET, a novel distributed system frame-

work to scale Huge Embedding model Training. Our key idea is

to exploit an efficient embedding-cache-enabled architecture,
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Figure 1: Illustrate of embedding model architecture

which is mainly inspired by the critical characteristics for embed-

ding models: popularity skewness and staleness tolerant. Specifically,
the popularity distribution of embeddings is often highly skewed,

typically following power-law distributions [51], implying a perfor-

mance opportunity: a small cache of hot embedding at each worker
can effectively save the network bandwidth while scaling training
throughput with the number of workers.

Replicating shared embedding data in multiple caches raises the

problem of consistency in the presence of writes. Fortunately, em-

bedding models are iterative convergent algorithms where some

staleness errors during training are acceptable and will not pre-

vent convergence. In other words, embedding models are robust

to a bounded amount of inconsistency (e.g., reading out-of-date

shared state). By relaxing the consistency guarantees properly, we

can exploit the opportunity of caches to gain significant system

improvements. However, conventional relaxed consistency models

such as Stale Synchronous Parallel (SSP) [22] are not aware of the

presence of skew access and require that every single worker should

be able to hold an entire set of parameters. Moreover, they mainly

target straggler problems rather than communication overhead. For

example, SSP maintains an up-to-date global model through sent

out write updates to servers each clock. Considering the large scale

and communication cost of embedding models, the above issues

become a critical limitation for scaling out the training.

To address the above issues, we incorporate a new consistency

model into HET. Our consistency model differs from the traditional

ones in two aspects. First, we enable the fine-grained caching and

consistency that provides guarantees on a per-embedding basis.

Specifically, for each cached embedding, we leverage an embedding-

specific Lamport clock to manage its fine-grained consistency ac-

tions (e.g., validation, synchronization) and provide the concept

of “per-embedding-clock-bounded” consistency — a worker can

see all updates of an embedding older than certain embedding-

specific clocks. We provide a fine-grained consistency model and

theoretically prove its convergence guarantees. Second, compared

to previous works that only allow staleness for read operations, we

further utilizes staleness for writes, allowing stale-writes based

on the timestamp deviation between the global and local clocks of

each embedding. This means that writing to an embedding residing

in the cache does not update the underlying global model until the

embedding is invalided or evicted from the cache. This feature is

critical in reducing communication overheads.

We summarize our contributions as follows: First, we reveal the

performance bottleneck and the opportunity for scaling huge em-

bedding models, and introduce a novel system abstraction with

embedding cache. Second, we employ a new cache consistency

model that provides (1) clock-bounded consistency at the fine-

grained of each embedding, and (2) allows staleness for both caches

read and write operations for minimizing communication overhead.

Finally, we build HET system, a new framework that implements

the proposed system abstraction and the consistency model, and

supports 10
12

parameters scale embedding model training, achiev-

ing 6.37−20.68× speedup and up to 88% embedding communication

reduction over the state-of-the-art baseline systems.

2 PRELIMINARY

2.1 Distributed Training

Distributedmachine learning. The target of machine learning

is to find a model x ∈ R𝑑 (𝑑 is the total number of parameters in

the model) that minimizes the empirical risk:

min

x

[
𝐹 (x) := 1

|𝜉 |
∑︁
𝑖

𝑓 (x; 𝜉𝑖 )
]
, (1)

where 𝑓 (·) is the loss function, 𝜉 is the training dataset and 𝜉𝑖 rep-

resents the 𝑖-th data sample. Distributed ML systems have been

extensively studied in recent years to scale up ML for big data and

large models. Parameter Server (PS) is a trendy data parallelism ar-

chitecture for many existing systems (e.g., TensorFlow [7], PS2 [52]).

Another choice is All-Reduce and several recent systems (e.g., Py-

Torch [30], Horovod [44]) show superior performance over PS with

the help of NCCL [4], especially for dense models.

Parallel training paradigms. Most of data parallelism studies

manage to keep consistent model performance as the standalone

mini-batch SGD. BSP assumes that all 𝑁 workers are fully synchro-

nized and performing the following update rule:

x(𝑡 + 1) = x(𝑡 ) − 𝜂
[
1

𝑁

𝑁∑︁
𝑖=1

𝐺𝑖 (x(𝑡 ) ; 𝜉𝑖 )
]
, (2)

where 𝜂 is the learning rate, 𝜉𝑖 are randomly sampled from the

training set, and 𝐺𝑖 (·) denotes the gradient from the 𝑖-th worker.

However, the frequent synchronization and straggler problem bring

significant communication costs. ASP avoids such overheads by

allowing the workers to proceed without waiting for each other.

But the model degradation happens because of the stale gradients.

To balance the trade-off between training efficiency and model

performance, SSP and several variants [24] have been proposed. It

has been proved that they could share the same convergence rate

with BSP when the staleness is upper bounded [32]. Unfortunately,

SSP requires to store the replication of the entire model inside every

single worker, which is impractical for giant models.

2.2 Embedding Models

Many types of embedding models (e.g., Wide & Deep [10], Deep

& Cross [45], DeepFM [17], xDeepFM [31] and Deep Interest Net-

work [55]) have been developed for high-dimension data, and have

achieved widespread success in recommender systems–a critical

service for internet companies. Figure 1 illustrates a common em-

bedding model architecture. In order to handle categorical data,

embedding tables map categorical features to dense representations

in an abstract space. In particular, each embedding lookup may be

interpreted as using a one-hot vector 𝑒𝑖 (with the 𝑖-th position being

1 while others are 0, where index 𝑖 corresponds to 𝑖-th category)
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Figure 2: Large embedding model workloads on TensorFlow

Figure 3: Embedding popularity skewness

to obtain the corresponding row vector of the embedding table

W ∈ R |𝑆 |×𝐷 as: x𝑖 = W⊤e𝑖 .
2.3 Problems and Opportunities

Communication cost. Large-scale embedding models suffer

communication bottlenecks from both dense parameters and sparse

parameters. PS [52] is often suitable for the sparse communication

based on the embedding lookup operations. AllReduce [37] is highly

optimized for the dense communication across GPUs (e.g., NCCL).

But it has to degenerate to the inefficient AllGather primitive for

sparse communication. Considering the difference in the sparsity of

model parameters, Parallax [27] proposes a hybrid communication

architecture that combines PS and AllReduce to transfer sparse and

dense parameters respectively. Kraken [47] follows the hybrid archi-

tecture and optimizes the embedding memory usage. HugeCTR [5]

is NVIDIA’s high-efficiency GPU framework designed for recom-

mendation systems on multiple GPUs, but it is memory restricted

since all embedding parameters must be maintained within GPUs.

In general, sparse embeddings dominate the communication bot-

tleneck for large-scale embedding model training. We evaluate the

distributed training efficiency of TensorFlow on six popular high-

dimensional (almost up to 10
7
) embedding workloads on a single

worker, including both click-through rate prediction and graph rep-

resentation learning. Only the embedding table is deployed on the

remote PS. We use a small embedding size 𝐷 = 32 and the network

bandwidth is 1 Gbps. Figure 2 summarizes the time occupation of

data transfer and the number of parameters over different embed-

dingmodels and datasets. Clearly, across all the models and datasets,

communication takes much longer time than computation. This

situation will become more common at modern web companies as

the embedding model is still growing in industrial applications (e.g.,

|𝑆 | = 10
9
to 10

11
in [47, 54] and 𝐷 = 10

4
in [13]). Meanwhile, we

also find the following characteristics that provide us opportunities

to further improve the performance of embedding model training.

Skewness. Figure 3 illustrates the skew distribution of embed-

ding update frequency on some popular workloads, including click-

through rate prediction (i.e., Criteo), citation network (i.e., ogbn-

mag), and product co-purchasing network (i.e., Amazon). The top

Global Embedding Table

Data 1

Worker 1 Worker 2 Worker 3

Pull/Push AllReduce

Data 2 Data 3

Dense parameters

Distributed
HET Server

HET Client

Cache
Embedding 

Table

Figure 4: System architecture of HET

10% popular embeddings on Criteo could account for 90% total num-

ber of updates. The observation motivates us to reduce the com-

munication by caching frequently updated embeddings in limited

local memory. Existing research provides evidence that parameter

updates from various embedding models exhibit a universal skewed

distribution [36], such as recommendation models [8, 25, 53], LDA

topic models [21, 26, 48, 49] and graph learning models [34, 41].

Robustness. Introducing cache raises the problem of ensuring

consistency in the presence of writes. Existing embedding models

fall into the category of iterative convergent algorithms which start

from a randomly chosen initial point and converge to optima by

repeating iteratively a set of procedures. Such iterative convergent

process has been shown robust to bounded amount of inconsistency

and still converge correctly [33]. This property allows frameworks

to improve system performance by relaxing cache consistency mod-

els and reading from local (out-of-date) caches.

3 HET DESIGN

This section describes a novel system solution to scale embedding

models by exploiting cache. Figure 4 provides an overview of our

system, which distributes the training data into multiple workers.

Each worker holds a replication of dense model parameters and

uses AllReduce for gradients synchronization during training. HET

organizes shared embedding parameters as tables. The whole em-

bedding parameters are stored in the global embedding table on

the HET server. The client is responsible for the management of

the local cache through communicating with servers to control the

inconsistency between the local and the global embedding table.

Below, we first introduce the design of cache management and

read/write protocols. Then we analyze the cache consistency and

model convergence guarantees enforced by our system.

3.1 Cache Management

The embeddings are organized in a collection of rows in the em-

bedding table. Each embedding represents a sparse feature ID

denoted by a unique key 𝑘 . In the global embedding table, each

global embedding x𝑘 records a global Lamport clock [28] x𝑘 .𝑐𝑔
indicating the total number of updates on this embedding. The

servers storing the global embedding table act as the cache coordi-

nator. Each worker can cache a small subset of the embedding table

locally. Instead of recording the “clock time” of each client, HET

supports fine-grained timing to coordinate cache synchronization
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Figure 5: Workflow of HET

at per-embedding basis. In the cache embedding table, each local

embedding x𝑖
𝑘
on the 𝑖-th worker records two clocks. (1) The start

clock x𝑖
𝑘
.𝑐𝑠 denotes the observed global clock when the last time

the embedding x𝑘 was fetched from server to worker 𝑖 . (2) To guar-

antee “read-my-updates” for a worker 𝑖 , we also increases the local
clock time x𝑖

𝑘
.𝑐𝑐 of the embedding x𝑘 by one once it is updated in a

iteration on that worker.

Our system provides operations on the embedding table to man-

age the cache. Listed below are the core methods of the HET client

library. We illustrate some of these interfaces in the execution flow

for one iteration in Figure 5.

Het.Cache.Fetch(key): This operation directly reads the em-

bedding indexed by key from the global embedding table on the

server. For the fetched embedding x𝑖
𝑘
, the start clock x𝑖

𝑘
.𝑐𝑠 and local

clock x𝑖
𝑘
.𝑐𝑐 both are set to be equal to its global clock x𝑘 .𝑐𝑔 .

Het.Cache.Evict(key): If input parameter key is provided,

this operation finds and evicts the corresponding embedding and

push the accumulated gradients and local clock x𝑖
𝑘
.𝑐𝑐 to the server.

The server receives the accumulated gradients, applies them on the

corresponding entry of global embedding table, and synchronizes

the global clock x𝑖
𝑘
.𝑐𝑔 = max(x𝑖

𝑘
.𝑐𝑔, x𝑖𝑘 .𝑐𝑐 ). If key is not provided,

this operation tries to evict the overflowed embeddings selected by

certain cache policies (e.g., LRU, LFU) to prevent the cache table

from exceeding the size limitation. We further discuss the selection

of cache policies in Section 4.3.

Het.Cache.CheckValid(key): This operation finds the local

embedding 𝑥𝑖
𝑘
from the cache according to the key and returns true

if its current clock 𝑥𝑖
𝑘
.𝑐𝑐 satisfies the following two time-bound

conditions: (1) the current clock should not be too far ahead of the

start clock, i.e., 𝑥𝑖
𝑘
.𝑐𝑐 ≤ 𝑥𝑖𝑘 .𝑐𝑠 +𝑠 ; (2) the current clock should not be

too far behind its global clock, i.e., 𝑥𝑘 .𝑐𝑔 ≤ 𝑥𝑖𝑘 .𝑐𝑐 +𝑠 . Here 𝑠 is a user-
defined staleness threshold to determine the cache validity. Since

the global clock is recorded on the server, to validate condition

(2), we have to send 𝑥𝑖
𝑘
.𝑐𝑐 from the worker to the server when the

cache hit occurs. Note that, the communication costs in this step

are not significant because we only send the clocks, rather than the

embedding vectors.

3.2 Read/write Protocols

We briefly introduce the workflow of HET client in Algorithm 1.

After each worker initializes the model parameters, it repeats the

Algorithm 1: Het Client

Input: input dataset 𝜉 , max iterations 𝑇 , model parameters

x0 and x𝑒 , DL runtime DL
Output: Trained model x0 and x𝑒 .

1 Initialize model parameter x0;
2 Het.Intialize(x𝑒);
3 for i ∈ range(𝑇 ) do
4 𝜉𝑖 ←sample a mini-batch of data from 𝜉 ;

5 𝐾𝑖 ← the unique embedding key set of 𝜉𝑖 ;

6 𝐸𝑖 ← Het.Read(𝐾𝑖 ) ; /* Read embeddings */

7 𝐺𝑖 ← DL.Forward/Backward(𝜉𝑖 , 𝐸𝑖 , x0);
8 DL.Update(𝐺𝑖 (x0)) ; /* Locally update dense */

9 Het.Write(𝐾𝑖 ,𝐺𝑖 (x𝑒 )) ; /* Write embedding */

10 end

iterations based on the mini-batch SGD algorithm and trains the

embedding model. The client extracts the unique keys (i.e., fea-

ture ID) from the mini-batch of data and Reads the corresponding
embeddings. The DL executor performs forward and backward

computation using these model parameters and input data. After

that, we could update the dense model parameters and sparse em-

beddings, respectively.

Het.Read(keys): Read a set of embedding vectors based on the

requested keys as shown in Algorithm 2. For each key 𝑘 , the client

first checks whether 𝑘 exists in the cache embedding table (i.e.,

Het.Cache.Find(key) in line 3). If not, the client fetches the latest

version embedding from the server and adds it into the local cache

embedding table temporarily (line 8); If so, the client further checks

whether the caching embedding is valid (line 4) and manages to

cache up with the server by synchronizations (line 5). For those

embeddings within the staleness threshold, the client directly reads

from the local embedding table (i.e., Het.Cache.Get(key)).
Het.Write(keys, gradients): Writing back the embedding

gradients as shown in Algorithm 3. Our cache embedding table

allows stale-writes to reduce the communication cost between

client and server. Since all the embeddings with keys have been

loaded in the cache embedding table before the forward and back-

ward computation, we could directly write the gradients locally

by accumulating them on the corresponding rows of the cache

embedding table (i.e., Het.Cache.Update(key, grad) in line 2).

This enforces the read-my-updates property, which ensures that

the data read by a client contains all its own updates. Meanwhile,

these cache embeddings should increase their current clocks by 1

(line 3). These accumulated updates could only be written back to

server later through the cache eviction operation, which become

“stale” relative to the global embedding table.

3.3 Cache Consistency Guarantee

From the per-embedding perspective, each embedding might exist

in multiple cache embedding tables during training. Therefore, the

cache consistency guarantee is crucial for the final model quality.

Before interpreting the cache consistency model, we first clarify

the following lemma on the clock consistency between any two

embedding replications in different workers:
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Algorithm 2: Het.Read

Input: input key set 𝐾

Output: Embedding set 𝐸

1 𝐸 ← {};
2 for k ∈ K do

3 if Het.Cache.Find(k) then
4 if not Het.Cache.CheckValid(k) then
5 Het.Cache.Evict(k) ; /* Synchronize */

6 Het.Cache.Fetch(k) ; /* embeddings */

7 end

8 else

9 Het.Cache.Fetch(k);

10 end

11 𝐸 ← 𝐸 ∪ Het.Cache.Get(k);

12 end

Algorithm 3: Het.Write

Input: input key set 𝐾 , the embedding gradients 𝐺

1 for k ∈ K do

2 Het.Cache.Update(k, 𝐺𝑘);

3 Het.Cache.Clock(𝑘) ; /* Increase 𝑐𝑐 by 1 */

4 end

5 Het.Cache.Evict();

Lemma 1. For any x𝑘 , let x𝑖𝑘 , x
𝑗

𝑘
are its two replicas cached on

worker 𝑖, 𝑗 , respectively, HET guarantees that:

∀𝑘, max

∀0≤𝑖,𝑗≤𝑁
{ |x𝑖

𝑘
.𝑐𝑐 − x𝑗

𝑘
.𝑐𝑐 | } ≤ 2𝑠. (3)

Proof. For any embedding x𝑘 at iteration 𝑡 , the replication

on the 𝑖-th worker is denoted by x𝑖
𝑘
. Based on the conditions in

CheckValid(key), we have: x𝑘 .𝑐𝑔 − 𝑠 ≤ x𝑖
𝑘
.𝑐𝑐 and x𝑖

𝑘
.𝑐𝑐 ≤ x𝑖

𝑘
.𝑐𝑠 +

𝑠 ≤ x𝑘 .𝑐𝑔 + 𝑠 . Therefore, for any two different workers 𝑖 and 𝑗 , the

difference between their local current clocks is upper bounded by

2𝑠 . □

Lemma 1 formally describes the clock-bounded guarantee at per

embedding basis. This guarantee enforces the following consistency

model across embedding replications in multiple caches:

Definition 1 (Per-embedding clock bounded consis-

tency). For any embedding x𝑘 , the consistency model guarantees
that a worker 𝑖 sees the updates of any other worker 𝑗 on embedding
x𝑘 in the range of [0, x𝑗

𝑘
.𝑐𝑐 − 2𝑠].

It is worth pointing out that Lemma 1 and the per-embedding

clock bounded consistency only describe the observable embed-

dings. If a worker fetches a key, makes an update, and never sees

that key again, while other workers continue to see that key. The

embedding in that worker is going to be evicted when the cache

capacity is full, and the update would be written back to the server.

In the corner case, it might remain in the cache until the model

completes the training process, we could simply ignore that update

due to the robustness of iterative convergent algorithms.

3.4 Convergence Analysis

Recall that we differ from traditional SSP in the following aspects to

improve performance: (1) SSP is not aware of the presence of skew

access and provides bounded staleness at the coarse granularity

measured by worker clocks, whereas we provide bounded staleness

at the fine granularity of individual embedding clocks considering

access heterogeneity. (2) SSP assumes a write-through cache so that

the server is up-to-date, whereas we adopt a write-back-with-stale

server to improve write performance. Given these key differences,

we present a new theoretical analysis of the proposed consistency

model, instead of reusing that of SSP. We summarize our proof

results showing that our algorithm is guaranteed to converge under

our consistency model. The details of the assumptions and proofs

are in Appendix A [3]. We decompose the 𝑑 model parameters into

two categories, including the dense parameters 𝑥0 and the sparse pa-

rameters of x𝑒 containing𝑚 embedding vectors (𝑥1, 𝑥2, . . . , 𝑥𝑚). We

denote 𝑥𝑖 and ∇𝑖 𝑓 (x) as the 𝑖-th component of x and ∇𝑓 (x), respec-
tively. Clearly, x = (𝑥0, 𝑥1, . . . , 𝑥𝑚) and ∇𝑓 = (∇0 𝑓 ,∇1 𝑓 , · · · ,∇𝑚 𝑓 ).
We have the following theorem:

Theorem 1 (Global Convergence Rate). Consider an arbi-
trary objective function 𝑓 , under the per-embedding-clock-bounded
consistency model and and certain assumptions, Given the success
parameter 𝜖 > 0, a constant learning rate value

𝜂 ≤ min(
√
𝜖

4

√
3𝑠𝐿𝑀𝐵

,

√
𝜖

4

√
𝐿𝑠𝑀𝐵

,
𝜖

12𝑀2𝐵2𝐿
)

and 𝑇 = Θ
(
𝑓 (𝑥 (0) )−𝑓inf

𝜖𝜂

)
iterations, for worker 𝑗 , we are guaranteed

to reach some iterate x𝑗 (𝑡★) with 1 ≤ 𝑡 ≤ 𝑇 such that
E∥∇𝑓 (x𝑗 (𝑡★) ) ∥2 ≤ 𝜖.

4 HET IMPLEMENTATION

HET’s implementation is built on Hetu
1
, a DL system consists

of 14.5K LOC in C/C++/CUDA with a Python dataflow front-end

(20.7K LOC). It is easy to extend our cache embedding mechanism

to other DL systems by replacing the DL runtime (e.g., TensorFlow,

PyTorch, MXNet). Taking TensorFlow (TF) as an example, we could

first replace the native TF parameter server with our HET server

to store the global embedding table. Then we could implement

an embedding variable inheriting from TF, and encapsulate the

lookup/update operations with HET client interfaces. We leave the

extension as our future work.

In our hybrid communication architecture, AllReduce is imple-

mented by MPI [14] and NCCL [4]; the key components – HET

client and server, are developed based on PS-Lite[6], a lightweight

implementation of PS interface. Currently, we implement the em-

bedding table in C++ and store the cache embedding table in the

limited DRAM (e.g., 12 GB) of each worker in our experiments.

We manage to improve the overall performance by leveraging the

following implementation optimizations.

4.1 Asynchronous Communication Invocation

Similar to TensorFlow[7], we use a static computation graph ab-

straction to organize all the operations in HET. All operators im-

plemented by GPU kernels are scheduled into the GPU stream [36].

1
https://github.com/PKU-DAIR/Hetu/
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Figure 6: Convergence performance comparison.

These operators will be launched and executed asynchronously to

avoid blocking the CPU execution. In HET, the communication op-

erations (e.g., AllReduce, Fetch and Evict) are also treated similarly

to overlap with computations. To ensure dependencies between

computation and communication, we borrow the idea of CUDA

event from GPU. We asynchronously launch communication re-

quests and record corresponding events to synchronize when the

updated parameter should be used in the next iteration.

4.2 Message Fusion

Combining Pull (model parameters) and Push (model gradients)

operations in parameter server architecture is a common tech-

nique [42] for performance improvement. It is easy to implement

for traditional dense parameters. As for sparse parameters, espe-

cially for embedding tables, it is non-trivial since the sparse access

property of embedding models. To combine the cache eviction and

fetching, we need to pre-fetch the next mini-batch of data in ad-

vance to inform the embedding indices. Besides, we also remove

the duplicate keys in the request of each mini-batch to reduce

redundant communication costs.

4.3 Cache Strategies

The goal of our cache strategy is to maximize the embedding lookup

hit rate within a restricted amount of memory. The effectiveness of

the cache is decided by two major factors: the query frequency from

local workers and the length of its expiration period. The latter one

is affected by other workers’ workload and is hard to predict, so

we only focus on optimizing the first objective, which is to cache

the most frequently used embeddings by the local workers (e.g.,

LFU and LRU policy). Due to the high maintenance cost incurred

by LFU, we provide a light-weighted version of LFU. When the

frequency of an embedding is high enough, it will be assigned a

direct access index, bypassing the cost of frequency maintenance.

Under the same workload, it could have a similar miss rate as the

original LFU while retaining a significantly small run-time cost.

5 EXPERIMENTS

Baselines. In this section, we compare our prototype system

with two state-of-the-art systems: TensorFlow (TF) [7] and Par-

allax [27]. To alleviate the concerns on the difference from the

system backbones and implementations, we implement three aux-

iliary baselines over our system named by HET PS (ASP), HET

AR (AllReduce) and HET Hybrid (w/o Cache). HET PS follows the

ASP algorithm in TensorFlow and each worker pushes its updates

to the server without waiting for the others. HET Hybrid keeps

the hybrid communication architecture in HET but removes the

cache embedding table. All of these three baselines are sharing the

same computation kernels and communication optimizations (i.e.,

overlapping, pre-fetching) as HET (denoted by HET Hybrid Cache

or HET Cache in the following).

Datasets and models. We select two categories of representa-

tive embedding model workloads, including the deep learning rec-

ommendation model (DLRM) and the graph neural network (GNN).

We use three industrial DLRM models consisting of Wide & Deep

(WDL) [10], DeepFM (DFM) [17] and Deep & Cross (DCN) [45].

They are evaluated on a popular recommendation dataset, Criteo [1],

which is also the largest standard benchmark in MLPerf [2]. There

could be more than one trillion model parameters (i.e., 1012 floats)
from the embedding table when we set 𝐷 = 4096 on Criteo.

The second category is GNN [18, 35, 38] model and we select

the most popular GraphSAGE [19] for large graphs. We evaluate

on node classification tasks and adopt several graph datasets with

different scale: Reddit[20], Amazon[11] and ogbn-mag[23]. More

details about the datasets and models are in the Appendix B [3].
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Figure 7: Per epoch time and the speedup of communication

time on DLRM tasks.

Experimental setting. We implement all of these models in

TensorFlow 1.15 and select SGD optimizer with the batch size of 128;

the learning rate is selected from [0.001, 0.01, 0.1] by grid search. We

have two GPU clusters for our evaluation. In cluster A, each node is

equipped with an Nvidia RTX TITAN 24 GB card supporting PCIe

3.0 and 12 GB DRAM for cache (we temporarily improve the DRAM

size to 48 GB in the last model scalability experiment). While the

servers are in a CPU cluster and each node has two Intel Xeon Gold

5120 CPUs and 376 GB DRAM. The servers and workers clusters are

connected by a 1 Gbit Ethernet. Cluster B has similar configurations,

but the GPU is replaced byNvidia V100 and the network is improved

to 10 Gbit Ethernet. The testing AUC thresholds of convergence are

set to be around 80% for the Criteo dataset, as reported in [10]. For

the GNN datasets, due to the customized feature engineering step

(e.g., introducing sparse features), we manually set the termination

point by predefined values. All experiments are executed five times,

and the averaged results are reported.

5.1 End-to-end Comparison

In this section, we first provide end-to-end comparison experiments

with the baselines. These experiments are evaluated on 8 workers

and 1 remote server. The size of the cache embedding table is set to

be 10% size of the global cache embedding table (listed in Figure 2).

We set 𝐷 = 128 in the following experiments and tune it in Sec. 5.3.

Convergence efficiency. Figure 6 shows the convergence curves
on six different workloads on cluster A. TF PS andHET PS follow the

ASP algorithm and cannot converge to the target thresholds in these

workloads. We provide HET with different staleness thresholds

𝑠 = 10 and 100. As we can see, our system always outperforms

the other baselines on all tasks. When 𝑠 = 100, benefited from our

cache embedding table mechanism, we could achieve around 4.36-

5.14× speed up compared to HET Hybrid. Compared to 𝑠 = 10, it is

natural that using a larger 𝑠 could alleviate more communication

costs. The variances regions are quite negligible, which verifies the

Table 1: End-to-end convergence efficiency comparison.

Convergence

time (h)

TF Parallax HET Hybrid

HET Cache

𝑠 = 10

HET Cache

𝑠 = 100

WDL-Criteo 56.402 (×10.86) 26.668 (×5.14) 9.938 (×1.91) 5.193

DFM-Criteo 27.529 (×9.24) 13.273 (×4.46) 5.314 (×1.78) 2.978

DCN-Criteo 99.023 (×11.29) 42.296 (×4.82) 17.341 (×1.98) 8.770

GNN-Amazon 8.667 (×20.68) 1.972 (×4.71) 0.583 (×1.39) 0.419

GNN-Reddit 0.752 (×6.37) 0.514 (×4.36) 0.123 (×1.04) 0.118

GNN-ogbn-mag 3.869 (×16.39) 1.040 (×4.41) 0.271 (×1.15) 0.236

convergence stability of our methods. Table 1 illustrates the end-to-

end convergence time and our HET achieves 6.37-20.68× speedup

compared to TF Parallax. PS-based ASP methods are not listed

because they cannot achieve the convergence thresholds. Note that,

in our system implementation, we make a unique operation for

the keys before the embedding communication operations to avoid

redundant embedding transferring costs. However, the GNN-Reddit

workload is quite special. It only has node-id embeddings and all

embeddings in a mini-batch of data samples are always unique

naturally. Therefore, in this case, the costs of unique operation

outweigh the benefits, making HET PS ASP slower than TF PS ASP.

Communication speedup.We also compare the per epoch time

on DLRM tasks and provide the following findings. First, through

comparative analysis on the per epoch time in Figure 7(a) and the

learning curves in Figure 6, we find that HET PS and TF PS fol-

low the same statistical efficiency [24] in Figure 6 (HET Hybrid

and TF Parallax are also the same). Their different convergence

speeds come from the backbone optimizations, which verify the

correctness of our implementation. Second, PS-based methods of-

ten show poor performance compared to hybrid-based methods

due to the dense communication. The phenomenon in WDL is

not significant because it has fewer dense model parameters than

DFM and DCN. Third, these results in Figures 6 and 7(a) also im-

ply that existing PS and hybrid communication techniques cannot

fundamentally solve the communication bottleneck in large-scale

embedding model training. Fortunately, due to the fine-grained

caching and consistency, our proposed HET achieves significant

performance improvement and up to 88% (≈ 1 − 1/8.2) embedding

communication reduction. Figure 7(b) shows the per epoch time

and communication time speedup comparison on three DLRM tasks

under 10 Gbit Ethernet cluster. As shown in Figure 7(b), although

the speedups are smaller than those in the 1 Gbit Ethernet cluster

due to the higher network bandwidth, the communication costs

are still the bottleneck of the model training process. We see that

our system still outperforms these baselines and achieves up to

2.3× and 5.2× speedup compared to HET Hybrid and TF Paral-

lax respectively. Another interesting finding is that HET AR on

1 Gbit Ethernet cluster performs better than HET PS due to the

utilization of the PCIe bandwidth cross GPUs. Although AllReduce

degenerates to the inefficient AllGather primitive for sparse com-

munication, it still achieves similar performance as HET Hybrid

because these baselines involving the PS are suffering from the lim-

ited network bandwidth between servers and workers. When we

use a 10 Gbit Ethernet, the high network bandwidth significantly

improves the speed of PS-based methods. But HET AR maintains

similar performance and becomes the slowest among all methods.
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Table 2: Final test AUC (%) with different 𝑠 on Criteo

Models textbf𝑠 = 0 𝑠 = 100 𝑠 = 10𝑘 𝑠 = ∞ Cache miss

rate (WDL)

𝑠 = 0 𝑠 = 100

WDL 79.64 79.62 78.84 74.61

DFM 79.74 79.73 78.96 70.91 0% 80.17% 80.15%

DCN 80.25 80.24 79.76 75.29 >0% 78.17% 78.12%

39% 40%

71% 74%

27% 29%
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Figure 8: Cache miss rate under different cache space and

strategy settings on GNN tasks.

Convergence quality. We first investigate how much negative

impact could the staleness have on the accuracy. We illustrate the

convergent model performance (i.e., test AUC) with different stale-

ness thresholds in Table 2 (left part). Due to the inherent robustness

of iterative convergent algorithms, we find that our method reaches

the target model quality even under moderate levels of staleness

(𝑠 = 100), although the model degradation becomes apparent under

high staleness levels.

We next investigate pathological cases (e.g. is it not possible that

prediction with the embedding parameters that are less frequently

synchronized may result in less accurate results (i.e., bias)?) We

make a further study on the test dataset of Criteo on WDL. As a

cache hit (miss) implies the prediction uses stale (up-to-date) embed-

ding parameters, we use cache miss rate to measure the frequency

of the prediction using the stale (less frequently synchronized) em-

bedding parameters. Therefore, we split the test set into two sets

based on the cache miss rate. As shown in Table 2 (right part), the

predictions distribution from two models (𝑠 = 0 and 𝑠 = 100) are

very close, which demonstrates that the stale embeddings will not

incur significant predication bias.

5.2 System Configuration Sensitivity

We study the impact of different cache embedding table sizes and

cache strategy settings. We measure the cache miss rate on GNN

task with ogbn-mag and Reddit datasets on cluster A. As shown

in Figure 8, LFU often performs a lower cache miss rate than LRU.

This is because LFU could reflect the long-term embedding access

popularity better. We also evaluate different cache embedding table

sizes, including 3%, 5%, 10% and 15%. As the cache table size growing,

the cache miss rate significantly decreases. For ogbn-mag with LFU,

given a piece of cache space whose size equals 15% of the global

embedding table size, almost 97% embedding accesses are performed

on the cache embedding table. This experiment strongly verifies the

effectiveness of HET and explains how does our cache embedding

table help to reduce the communication costs.
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Figure 9: Scalability study

5.3 Scalability

We conduct a scalability study in terms of run time speedup on clus-

ter A over 4 servers with 1, 2, 4, 8, 16, and 32 workers respectively.

As shown in Figure 9(a) and Figure 9(b), both TF PS and TF Parallax

have limited scalability suffering from large amounts of embedding

communication costs. By contrast, our HET achieves improved

scalability by caching the hot embeddings. We also note that all

methods show better scalability on GNN-Reddit than WDL-Criteo.

Because the latter has a larger embedding table and becomes more

communication-intensive and more difficult to scale up. We also

study the model scalability of HET on WDL-Criteo by increasing

the embedding size 𝐷 up to 4096 (around one trillion model param-
eters) over 32 workers. Figure 9(c) shows that HET significantly

outperforms TF and Parallax since their PS architecture faces a

more serious communication bottleneck with such a large scale

embedding table.

6 CONCLUSION

Embedding model trained on high-dimensional data is common at

modern web companies and poses an extra challenge to standard

frameworks: the high communication overhead causes the embed-

ding workloads to have low execution efficiency and scalability. To

address this performance bottleneck, we presented HET, a system

framework leveraging the embedding cache architecture combined

with fine-grained consistency and stale-write protocols. Experimen-

tal results have shown that HET could reduce up to 88% embedding

communication and achieve up to 20.68× performance improve-

ments, compared to the state-of-the-art baselines. We hope that this

work and the open-source release of HET helps motivate the release

of larger high-dimension datasets from modern web companies and

the increase of research on larger embedding models.
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